130 research outputs found

    Models for Enhanced Absorption in Inhomogeneous Superconductors

    Full text link
    We discuss the low-frequency absorption arising from quenched inhomogeneity in the superfluid density rho_s of a model superconductor. Such inhomogeneities may arise in a high-T_c superconductor from a wide variety of sources, including quenched random disorder and static charge density waves such as stripes. Using standard classical methods for treating randomly inhomogeneous media, we show that both mechanisms produce additional absorption at finite frequencies. For a two-fluid model with weak mean-square fluctuations <(d rho_s)^2 > in rho_s and a frequency-independent quasiparticle conductivity, the extra absorption has oscillator strength proportional to the quantity <(d rho_s)^2>/rho_s, as observed in some experiments. Similar behavior is found in a two-fluid model with anticorrelated fluctuations in the superfluid and normal fluid densities. The extra absorption typically occurs as a Lorentzian centered at zero frequency. We present simple model calculations for this extra absorption under conditions of both weak and strong fluctuations. The relation between our results and other model calculations is briefly discussed

    Forced Stratified Turbulence: Successive Transitions with Reynolds Number

    Full text link
    Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, and the momentum balance is approximately cyclostrophic and hydrostatic. This is a regime dominated by so-called pancake vortices, with only a weak excitation of internal gravity waves and large values of the local Richardson number, Ri, everywhere. At higher values of R there are successive transitions to (a) overturning motions with local reversals in the density stratification and small or negative values of Ri; (b) growth of a horizontally uniform vertical shear flow component; and (c) growth of a large-scale vertical flow component. Throughout these transitions, pancake vortices continue to dominate the large-scale part of the turbulence, and the gravity wave component remains weak except at small scales.Comment: 8 pages, 5 figures (submitted to Phys. Rev. E

    Pregnancy-related fibroid reduction

    Get PDF
    We tested the hypothesis that the protective effect of parity on fibroids is due to direct pregnancy-related effects by following women from early pregnancy to postpartum period with ultrasound. Of 171 women with one initial fibroid, 36% had no identifiable fibroid at the time of postpartum ultrasound, and 79% of the remaining fibroids decreased in size

    Quantum nucleation in ferromagnets with tetragonal and hexagonal symmetries

    Full text link
    The phenomenon of quantum nucleation is studied in a ferromagnet in the presence of a magnetic field at an arbitrary angle. We consider the magnetocrystalline anisotropy with tetragonal symmetry and that with hexagonal symmetry, respectively. By applying the instanton method in the spin-coherent-state path-integral representation, we calculate the dependence of the rate of quantum nucleation and the crossover temperature on the orientation and strength of the field for a thin film and for a bulk solid. Our results show that the rate of quantum nucleation and the crossover temperature depend on the orientation of the external magnetic field distinctly, which provides a possible experimental test for quantum nucleation in nanometer-scale ferromagnets.Comment: 19 pages and 3 figures, Final version and accepted by Phys. Rev. B (Feb. B1 2001

    Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands?

    Get PDF
    Grasses using the C4 photosynthetic pathway dominate today's savanna ecosystems and account for ∼20% of terrestrial carbon fixation. However, this dominant status was reached only recently, during a period of C4 grassland expansion in the Late Miocene and Early Pliocene (4–8 Myr ago). Declining atmospheric CO2 has long been considered the key driver of this event, but new geological evidence casts doubt on the idea, forcing a reconsideration of the environmental cues for C4 plant success.Here, I evaluate the current hypotheses and debate in this field, beginning with a discussion of the role of CO2 in the evolutionary origins, rather than expansion, of C4 grasses. Atmospheric CO2 starvation is a plausible selection agent for the C4 pathway, but a time gap of around 10 Myr remains between major decreases in CO2 during the Oligocene, and the earliest current evidence of C4 plants.An emerging ecological perspective explains the Miocene expansion of C4 grasslands via changes in climatic seasonality and the occurrence of fire. However, the climatic drivers of this event are debated and may vary among geographical regions.Uncertainty in these areas could be reduced significantly by new directions in ecological research, especially the discovery that grass species richness along rainfall gradients shows contrasting patterns in different C4 clades. By re-evaluating a published data set, I show that increasing seasonality of rainfall is linked to changes in the relative abundance of the major C4 grass clades Paniceae and Andropogoneae. I propose that the explicit inclusion of these ecological patterns would significantly strengthen climate change hypotheses of Miocene C4 grassland expansion. Critically, they allow a new series of testable predictions to be made about the fossil record.Synthesis. This paper offers a novel framework for integrating modern ecological patterns into theories about the geological history of C4 plants

    Recent Developments in Understanding Two-dimensional Turbulence and the Nastrom-Gage Spectrum

    Get PDF
    Two-dimensional turbulence appears to be a more formidable problem than three-dimensional turbulence despite the numerical advantage of working with one less dimension. In the present paper we review recent numerical investigations of the phenomenology of two-dimensional turbulence as well as recent theoretical breakthroughs by various leading researchers. We also review efforts to reconcile the observed energy spectrum of the atmosphere (the spectrum) with the predictions of two-dimensional turbulence and quasi-geostrophic turbulence.Comment: Invited review; accepted by J. Low Temp. Phys.; Proceedings for Warwick Turbulence Symposium Workshop on Universal features in turbulence: from quantum to cosmological scales, 200

    Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions

    Full text link
    Excess contributions to the free energy due to interfaces occur for many problems encountered in the statistical physics of condensed matter when coexistence between different phases is possible (e.g. wetting phenomena, nucleation, crystal growth, etc.). This article reviews two methods to estimate both interfacial free energies and line tensions by Monte Carlo simulations of simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is based on thermodynamic integration. This method is useful to study flat and inclined interfaces for Ising lattices, allowing also the estimation of line tensions of three-phase contact lines, when the interfaces meet walls (where "surface fields" may act). A generalization to off-lattice systems is described as well. The second method is based on the sampling of the order parameter distribution of the system throughout the two-phase coexistence region of the model. Both the interface free energies of flat interfaces and of (spherical or cylindrical) droplets (or bubbles) can be estimated, including also systems with walls, where sphere-cap shaped wall-attached droplets occur. The curvature-dependence of the interfacial free energy is discussed, and estimates for the line tensions are compared to results from the thermodynamic integration method. Basic limitations of all these methods are critically discussed, and an outlook on other approaches is given

    Metatranscriptomics analysis reveals a novel transcriptional and translational landscape during Middle East respiratory syndrome coronavirus infection

    Get PDF
    Among all RNA viruses, coronavirus RNA transcription is the most complex and involves a process termed “discontinuous transcription” that results in the production of a set of 3′-nested, co-terminal genomic and subgenomic RNAs during infection. While the expression of the classic canonical set of subgenomic RNAs depends on the recognition of a 6- to 7-nt transcription regulatory core sequence (TRS), here, we use deep sequence and metagenomics analysis strategies and show that the coronavirus transcriptome is even more vast and more complex than previously appreciated and involves the production of leader-containing transcripts that have canonical and noncanonical leader-body junctions. Moreover, by ribosome protection and proteomics analyses, we show that both positive- and negative-sense transcripts are translationally active. The data support the hypothesis that the coronavirus proteome is much vaster than previously noted in the literature

    Metagenomics combined with activity-based proteomics point to gut bacterial enzymes that reactivate mycophenolate

    Get PDF
    Mycophenolate mofetil (MMF) is an important immunosuppressant prodrug prescribed to prevent organ transplant rejection and to treat autoimmune diseases. MMF usage, however, is limited by severe gastrointestinal toxicity that is observed in approximately 45% of MMF recipients. The active form of the drug, mycophenolic acid (MPA), undergoes extensive enterohepatic recirculation by bacterial beta-glucuronidase (GUS) enzymes, which reactivate MPA from mycophenolate glucuronide (MPAG) within the gastrointestinal tract. GUS enzymes demonstrate distinct substrate preferences based on their structural features, and gut microbial GUS enzymes that reactivate MPA have not been identified. Here, we compare the fecal microbiomes of transplant recipients receiving MMF to healthy individuals using shotgun metagenomic sequencing. We find that neither microbial composition nor the presence of specific structural classes of GUS genes are sufficient to explain the differences in MPA reactivation measured between fecal samples from the two cohorts. We next employed a GUS-specific activity-based chemical probe and targeted metaproteomics to identify and quantify the GUS proteins present in the human fecal samples. The identification of specific GUS enzymes was improved by using the metagenomics data collected from the fecal samples. We found that the presence of GUS enzymes that bind the flavin mononucleotide (FMN) is significantly correlated with efficient MPA reactivation. Furthermore, structural analysis identified motifs unique to these FMN-binding GUS enzymes that provide molecular support for their ability to process this drug glucuronide. These results indicate that FMN-binding GUS enzymes may be responsible for reactivation of MPA and could be a driving force behind MPA-induced GI toxicity.Bio-organic Synthesi
    corecore