2,321 research outputs found
Giant magnetoelectric effect in pure manganite-manganite heterostructures
Obtaining strong magnetoelectric couplings in bulk materials and
heterostructures is an ongoing challenge. We demonstrate that manganite
heterostructures of the form show strong multiferroicity
in magnetic manganites where ferroelectric polarization is realized by charges
leaking from to due to repulsion. Here, an
effective nearest-neighbor electron-electron (electron-hole) repulsion
(attraction) is generated by cooperative electron-phonon interaction. Double
exchange, when a particle virtually hops to its unoccupied neighboring site and
back, produces magnetic polarons that polarize antiferromagnetic regions. Thus
a striking giant magnetoelectric effect ensues when an external electrical
field enhances the electron leakage across the interface.Comment: 13 page
Self Consistent Expansion for the Molecular Beam Epitaxy Equation
Motivated by a controversy over the correct results derived from the dynamic
renormalization group (DRG) analysis of the non linear molecular beam epitaxy
(MBE) equation, a self-consistent expansion (SCE) for the non linear MBE theory
is considered. The scaling exponents are obtained for spatially correlated
noise of the general form . I find a lower critical dimension , above, which the linear MBE solution appears. Below the
lower critical dimension a r-dependent strong-coupling solution is found. These
results help to resolve the controversy over the correct exponents that
describe non linear MBE, using a reliable method that proved itself in the past
by predicting reasonable results for the Kardar-Parisi-Zhang (KPZ) system,
where DRG failed to do so.Comment: 16 page
First-principle Wannier functions and effective lattice fermion models for narrow-band compounds
We propose a systematic procedure for constructing effective lattice fermion
models for narrow-band compounds on the basis of first-principles electronic
structure calculations. The method is illustrated for the series of
transition-metal (TM) oxides: SrVO, YTiO, VO, and
YMoO. It consists of three parts, starting from LDA. (i)
construction of the kinetic energy Hamiltonian using downfolding method. (ii)
solution of an inverse problem and construction of the Wannier functions (WFs)
for the given kinetic energy Hamiltonian. (iii) calculation of screened Coulomb
interactions in the basis of \textit{auxiliary} WFs, for which the
kinetic-energy term is set to be zero. The last step is necessary in order to
avoid the double counting of the kinetic-energy term, which is included
explicitly into the model. The screened Coulomb interactions are calculated in
a hybrid scheme. First, we evaluate the screening caused by the change of
occupation numbers and the relaxation of the LMTO basis functions, using the
conventional constraint-LDA approach, where all matrix elements of
hybridization involving the TM orbitals are set to be zero. Then, we switch
on the hybridization and evaluate the screening associated with the change of
this hybridization in RPA. The second channel of screening is very important,
and results in a relatively small value of the effective Coulomb interaction
for isolated bands. We discuss details of this screening and consider
its band-filling dependence, frequency dependence, influence of the lattice
distortion, proximity of other bands, and the dimensionality of the model
Hamiltonian.Comment: 35 pages, 25 figure
The blurring boundaries between synchronicity and asynchronicity:new communicative situations in work-related Instant Messaging
Instant messaging is one of the most popular communication technologies in virtual teams, enabling interactions to intertwine whole working days, thus creating the sense of copresence for team members who are geographically dispersed. Through close linguistic analyses of naturally occurring data from a virtual team, this article discusses the implications of two novel communicative situations enabled by instant messaging: presence information and the persistence of transcript. The preliminary findings of this study indicate that these new communicative situations require the flouting or rethinking of previously existing interactional norms and that communicative practices employed by the team members are not yet conventionalized/normalized, the expectations and interpretations of interactional rituals and timing vary highly, even within the same virtual team
First-Principles Study of Electronic Structure in -(BEDT-TTF)I at Ambient Pressure and with Uniaxial Strain
Within the framework of the density functional theory, we calculate the
electronic structure of -(BEDT-TTF)I at 8K and room temperature
at ambient pressure and with uniaxial strain along the - and -axes. We
confirm the existence of anisotropic Dirac cone dispersion near the chemical
potential. We also extract the orthogonal tight-binding parameters to analyze
physical properties. An investigation of the electronic structure near the
chemical potential clarifies that effects of uniaxial strain along the a-axis
is different from that along the b-axis. The carrier densities show
dependence at low temperatures, which may explain the experimental findings not
only qualitatively but also quantitatively.Comment: 10 pages, 7 figure
Exchange in silicon-based quantum computer architecture
The silicon-based quantum computer proposal has been one of the intensely
pursued ideas during the past three years. Here we calculate the donor electron
exchange in silicon and germanium, and demonstrate an atomic-scale challenge
for quantum computing in Si (and Ge), as the six (four) conduction band minima
in Si (Ge) lead to inter-valley electronic interferences, generating strong
oscillations in the exchange splitting of two-donor two-electron states. Donor
positioning with atomic scale precision within the unit cell thus becomes a
decisive factor in determining the strength of the exchange coupling--a
fundamental ingredient for two-qubit operations in a silicon-based quantum
computer.Comment: 5 pages, 2 figure
Fiber-Based Measurement of Bow-Shock Spectra for Reentry Flight Testing
We demonstrated a fiber-based approach for obtaining optical spectra of a glowing bow shock in a high-enthalpy air flow. The work was performed in a ground test with the NASA Ames Aerodynamic Heating Facility (AHF) that is used for atmospheric reentry simulation. The method uses a commercial fiber optic that is embedded in the nose of an ablating bluntbody model and provides a line-of-sight view in the streamwise direction - directly upstream into the hot post-shock gas flow. Both phenolic impregnated carbon ablator (PICA) and phenolic carbon (PhenCarb 28) materials were used as thermal protection systems. Results show that the fibers survive the intense heat and operate sufficiently well during the first several seconds of a typical AHF run (20 MJ/kg). This approach allowed the acquisition of optical spectra, enabling a Boltzmann-based electronic excitation temperature measurement from Cu atom impurities (averaged over a line-of-sight through the gas cap, with a 0.04 sec integration time)
A Time Series Analysis of Air Pollution and Preterm Birth in Pennsylvania, 1997–2001
Preterm delivery can lead to serious infant health outcomes, including death and lifelong disability. Small increases in preterm delivery risk in relation to spatial gradients of air pollution have been reported, but previous studies may have controlled inadequately for individual factors. Using a time-series analysis, which eliminates potential confounding by individual risk factors that do not change over short periods of time, we investigated the effect of ambient outdoor particulate matter with diameter ≤10 μm (PM(10)) and sulfur dioxide on risk for preterm delivery. Daily counts of preterm births were obtained from birth records in four Pennsylvania counties from 1997 through 2001. We observed increased risk for preterm delivery with exposure to average PM(10) and SO(2) in the 6 weeks before birth [respectively, relative risk (RR) = 1.07; 95% confidence interval (CI), 0.98–1.18 per 50 μg/m(3) increase; RR = 1.15; 95% CI, 1.00–1. 32 per 15 ppb increase], adjusting for long-term preterm delivery trends, co-pollutants, and offsetting by the number of gestations at risk. We also examined lags up to 7 days before the birth and found an acute effect of exposure to PM(10) 2 days and 5 days before birth (respectively, RR = 1.10; 95% CI, 1.00–1.21; RR = 1.07; 95% CI, 0.98–1.18) and SO(2) 3 days before birth (RR = 1.07; 95% CI, 0.99–1.15), adjusting for covariates, including temperature, dew point temperature, and day of the week. The results from this time-series analysis, which provides evidence of an increase in preterm birth risk with exposure to PM(10) and SO(2), are consistent with prior investigations of spatial contrasts
Low-Energy Effective Hamiltonian and the Surface States of Ca_3PbO
The band structure of Ca_3PbO, which possesses a three-dimensional massive
Dirac electron at the Fermi energy, is investigated in detail. Analysis of the
orbital weight distributions on the bands obtained in the first-principles
calculation reveals that the bands crossing the Fermi energy originate from the
three Pb-p orbitals and three Ca-dx2y2 orbitals. Taking these Pb-p and Ca-dx2y2
orbitals as basis wave functions, a tight-binding model is constructed. With
the appropriate choice of the hopping integrals and the strength of the
spin-orbit coupling, the constructed model sucessfully captures important
features of the band structure around the Fermi energy obtained in the
first-principles calculation. By applying the suitable basis transformation and
expanding the matrix elements in the series of the momentum measured from a
Dirac point, the low-energy effective Hamiltonian of this model is explicitely
derived and proved to be a Dirac Hamiltonain. The origin of the mass term is
also discussed. It is shown that the spin-orbit coupling and the orbitals other
than Pb-p and Ca-dx2y2 orbitals play important roles in making the mass term
finite. Finally, the surface band structures of Ca_3PbO for several types of
surfaces are investigated using the constructed tight-binding model. We find
that there appear nontrivial surface states that cannot be explained as the
bulk bands projected on the surface Brillouin zone. The relation to the
topological insulator is also discussed.Comment: 11 page
- …