7,119 research outputs found

    The drag coefficient of cylindrical spacecraft in orbit at altitudes greater than 150 km

    Get PDF
    The spacecraft of the Geopotential Research Mission (GRM) are cylindrical in form and designed to fly with their longitudinal axes parallel to their direction of flight. The ratio of length to diameter of these spacecraft is roughly equal to 5.0. Other spacecraft previously flown had corresponding ratios roughly equal to 1.0, and therefore the drag produced by impacts on the lateral surfaces of those spacecraft was not as large as it will be on the GRM spacecraft. Since the drag coefficient is essentially the drag force divided by the frontal area in flight, lateral impacts, when taken into account make the GRM drag coefficient significantly larger than the coefficients used before for shorter spacecraft. A simple formula is derived for the drag coefficient of a cylindrical body flying with its long axis along the direction of flight, and it is used to estimate the drag for the GRM. The formula shows that the drag due to lateral surface impacts depends on the ratio of length-to-diameter and on a coefficient C sub LS (lateral surface impact coefficient) which can be determined from previous cylindrical spacecraft flown with the same attitude, or can be obtained from laboratory measurements of momentum accommodation coefficients

    Exploring sizable triple Higgs couplings in the 2HDM

    Full text link
    An important task at future colliders is the measurement of the triple Higgs coupling. Depending on its size relative to the Standard Model (SM) value, certain collider options result in a higher experimental accuracy. Within the framework of Two Higgs Doublet Models (2HDM) type I and II we investigate the allowed ranges for all triple Higgs couplings involving at least one light, SM-like Higgs boson. We take into account theoretical constraints (unitarity, stability), experimental constraints from direct Higgs-boson searches, measurements of the SM-like Higgs-boson properties, flavor observables and electroweak precision data. We find that the SM-type triple Higgs coupling w.r.t. its SM value, λhhh/λSM\lambda_{hhh}/\lambda_{\rm SM}, can range between ∼−0.5\sim -0.5 and ∼1.5\sim 1.5. Depending on which value is realized, the HL-LHC can compete with, or is clearly inferior to the ILC. We find the coupling λhhH\lambda_{hhH} between ∼−1.5\sim -1.5 and ∼1.5\sim 1.5. Triple Higgs couplings involving two heavy Higgs bosons, λhHH\lambda_{hHH}, λhAA\lambda_{hAA} and λhH+H−\lambda_{hH^+H^-} can reach values up to O(10){\cal O}(10), roughly independent of the 2HDM type. This can lead to potentially strongly enhanced production of two Higgs-bosons at the HL-LHC or high-energy e+e−e^+e^- colliders.Comment: 44 pages, 16 figure

    The silicate absorption profile in the ISM towards the heavily obscured nucleus of NGC 4418

    Get PDF
    The 9.7-micron silicate absorption profile in the interstellar medium provides important information on the physical and chemical composition of interstellar dust grains. Measurements in the Milky Way have shown that the profile in the diffuse interstellar medium is very similar to the amorphous silicate profiles found in circumstellar dust shells around late M stars, and narrower than the silicate profile in denser star-forming regions. Here, we investigate the silicate absorption profile towards the very heavily obscured nucleus of NGC 4418, the galaxy with the deepest known silicate absorption feature, and compare it to the profiles seen in the Milky Way. Comparison between the 8-13 micron spectrum obtained with TReCS on Gemini and the larger aperture spectrum obtained from the Spitzer archive indicates that the former isolates the nuclear emission, while Spitzer detects low surface brightness circumnuclear diffuse emission in addition. The silicate absorption profile towards the nucleus is very similar to that in the diffuse ISM in the Milky Way with no evidence of spectral structure from crystalline silicates or silicon carbide grains.Comment: 7 Pages, 3 figures. MNRAS in pres

    Light Higgs bosons from a strongly interacting Higgs sector

    Get PDF
    The mass and the decay width of a Higgs boson in the minimal standard model are evaluated by a variational method in the limit of strong self-coupling interaction. The non-perturbative technique provides an interpolation scheme between strong-coupling regime and weak-coupling limit where the standard perturbative results are recovered. In the strong-coupling limit the physical mass and the decay width of the Higgs boson are found to be very small as a consequence of mass renormalization. Thus it is argued that the eventual detection of a light Higgs boson would not rule out the existence of a strongly interacting Higgs sector.Comment: 2 figure

    Charged lepton flavour violation from low scale seesaw neutrinos

    Full text link
    In the work presented here, we have studied the impact of right handed neutrinos, which are introduced to account for the evidence of neutrino masses, on charged lepton flavour violating observables. In particular, we have focused on the loop induced decays of the Z boson into two leptons of different flavour. We have performed a numerical study of the rates predicted for these processes within the Inverse Seesaw model, specifically considering scenarios where μ−e \mu -e transitions are suppressed. Our conclusion, after comparison with the most relevant experimental constraints, is that branching ratios as large as 10−7 10^{-7} can be predicted in the τ−μ \tau -\mu or τ−e \tau -e channels, together with heavy neutrinos having masses of the TeV order. Such rates could be accessible at next generation colliders.Comment: 13 pages, 5 figures, 3 tables. Proceedings of the Corfu Summer Institute 2016 "School and Workshops on Elementary Particle Physics and Gravity", 31 August - 23 September 2016, Corfu, Greec
    • …
    corecore