9,179 research outputs found

    The IACOB project: I. Rotational velocities in Northern Galactic O and early B-type stars revisited. The impact of other sources of line-broadening

    Full text link
    Stellar rotation is an important parameter in the evolution of massive stars. Accurate and reliable measurements of projected rotational velocities in large samples of OB stars are crucial to confront the predictions of stellar evolutionary models with observational constraints. We reassess previous determinations of projected rotational velocities (vsini) in Galactic OB stars using a large, high quality spectroscopic dataset, and a strategy which account for other sources of broadening appart from rotation affecting the diagnostic lines We present a versatile and user friendly IDL tool, based on a combined Fourier Transform (FT) + goodness of fit (GOF) methodology, for the line-broadening characterization in OB-type stars. We use this tool to (a) investigate the impact of macroturbulent and microturbulent broadenings on vsini measurements, and (b) determine vsini in a sample of 200 Galactic OB-type stars, also characterizing the amount of macroturbulent broadening (\vmacro) affecting the line profiles. We present observational evidence illustrating the strengths and limitations of the proposed FT+GOF methodology for the case of OB stars. We confirm previous statements (based on indirect arguments or smaller samples) that the macroturbulent broadening is ubiquitous in the massive star domain. We compare the newly derived vsini with previous determinations not accounting for this extra line-broadening contribution, and show that those cases with vsini< 120 km/s need to be systematically revised downwards by ~25 (+/-20) km/s. We suggest that microturbulence may impose an upper limit below which vsini and \vmacro\ could be incorrectly derived by means of the proposed methodology as presently used, and discuss the implications of this statement on the study of relatively narrow line massive stars.Comment: Accepted for publication in A&A (19 pages, 15 figures, 6 tables). Tables A1-A5 will be make available in the final edited version of the paper (or under request to SS-D

    Exploring sizable triple Higgs couplings in the 2HDM

    Full text link
    An important task at future colliders is the measurement of the triple Higgs coupling. Depending on its size relative to the Standard Model (SM) value, certain collider options result in a higher experimental accuracy. Within the framework of Two Higgs Doublet Models (2HDM) type I and II we investigate the allowed ranges for all triple Higgs couplings involving at least one light, SM-like Higgs boson. We take into account theoretical constraints (unitarity, stability), experimental constraints from direct Higgs-boson searches, measurements of the SM-like Higgs-boson properties, flavor observables and electroweak precision data. We find that the SM-type triple Higgs coupling w.r.t. its SM value, λhhh/λSM\lambda_{hhh}/\lambda_{\rm SM}, can range between 0.5\sim -0.5 and 1.5\sim 1.5. Depending on which value is realized, the HL-LHC can compete with, or is clearly inferior to the ILC. We find the coupling λhhH\lambda_{hhH} between 1.5\sim -1.5 and 1.5\sim 1.5. Triple Higgs couplings involving two heavy Higgs bosons, λhHH\lambda_{hHH}, λhAA\lambda_{hAA} and λhH+H\lambda_{hH^+H^-} can reach values up to O(10){\cal O}(10), roughly independent of the 2HDM type. This can lead to potentially strongly enhanced production of two Higgs-bosons at the HL-LHC or high-energy e+ee^+e^- colliders.Comment: 44 pages, 16 figure

    Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential

    Get PDF
    Spontaneous pattern formation in a variety of spatially extended nonlinear system always occurs through a modulation instability: homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that the spatio-temporal periodic modulation of the potential of the spatially extended system results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of especial practical interest, as can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of Complex Ginzburg-Landau equations in one and two spatial dimension (and time). The physical mechanism of instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates.Comment: 5 pages, 4 figures, 1 supplementary video fil

    New Constraints on General Slepton Flavor Mixing

    Full text link
    We explore the phenomenological implications on charged lepton flavor violating (LFV) processes from slepton flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the slepton sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L,R; i,j = 1, 2, 3) parameters. The present upper bounds on the most relevant LFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and (g-2) data, lead to updated constraints on all slepton flavor mixing parameters. A comparative discussion of the most effective LFV processes to constrain the various generation mixings is included.Comment: 42 pages, 19 figures. Minor changes, version to appear in PR

    Diffusion of muonium and hydrogen in diamond

    Full text link
    Jump rates of muonium and hydrogen in diamond are calculated by quantum transition-state theory, based on the path-integral centroid formalism. This technique allows us to study the influence of vibrational mode quantization on the effective free-energy barriers Delta F for impurity diffusion, which are renormalized respect to the zero-temperature classical calculation. For the transition from a tetrahedral (T) site to a bond-center (BC) position, Delta F is larger for hydrogen than for muonium, and the opposite happens for the transition from BC to T. The calculated effective barriers decrease for rising temperature, except for the muonium transition from T to BC sites. Calculated jump rates are in good agreement to available muon spin rotation data.Comment: 4 pages, 3 figure

    Updated Constraints on General Squark Flavor Mixing

    Get PDF
    We explore the phenomenological implications on non-minimal flavor violating (NMFV) processes from squark flavor mixing within the Minimal Supersymmetric Standard Model. We work under the model-independent hypothesis of general flavor mixing in the squark sector, being parametrized by a complete set of dimensionless delta^AB_ij (A,B = L, R; i,j = u, c, t or d, s, b) parameters. The present upper bounds on the most relevant NMFV processes, together with the requirement of compatibility in the choice of the MSSM parameters with the recent LHC and g-2 data, lead to updated constraints on all squark flavor mixing parameters.Comment: 30 pages, 7 figures. arXiv admin note: text overlap with arXiv:1304.2783, arXiv:1109.623

    Masgomas-4: Physical characterization of a double-core obscured cluster with a massive and very young stellar population

    Full text link
    The discovery of new, obscured massive star clusters has changed our understanding of the Milky Way star-forming activity from a passive to a very active star-forming machine. The search for these obscured clusters is strongly supported by the use of all-sky, near-IR surveys. The main goal of the MASGOMAS project is to search for and study unknown, young, and massive star clusters in the Milky Way, using near-IR data. Here we try to determine the main physical parameters (distance, size, total mass, and age) of Masgomas-4, a new double-core obscured cluster. Using near-IR photometry (JJ, HH, and KSK_S) we selected a total of 21 stars as OB-type star candidates. Multi-object, near-IR follow-up spectroscopy allowed us to carry out the spectral classification of the OB-type candidates. Of the 21 spectroscopically observed stars, ten are classified as OB-type stars, eight as F- to early G-type dwarf stars, and three as late-type giant stars. Spectroscopically estimated distances indicate that the OB-type stars belong to the same cluster, located at a distance of 1.900.90+1.281.90^{+1.28}_{-0.90} kpc. Our spectrophotometric data confirm a very young and massive stellar population, with a clear concentration of pre-main-sequence massive candidates (Herbig Ae/Be) around one of the cluster cores. The presence of a surrounding HII cloud and the Herbig Ae/Be candidates indicate an upper age limit of 5 Myr.Comment: Accepted for publication in A&
    corecore