68 research outputs found

    The Electron Proton Helium INstrument as an Example for a Space Weather Radiation Instrument

    Get PDF
    The near-Earth energetic particle environment has been monitored since the 1970's. With the increasing importance of quantifying the radiation risk for, e.g. for the human exploration of the Moon and Mars, it is essential to continue and further improve these measurements. The Electron Proton Helium INstrument (EPHIN) on-board SOHO continually provides these data sets to the solar science and space weather communities since 1995. Here, we introduce the numerous data products developed over the years and present space weather related applications. Important design features that have led to EPHINs success as well as lessons learned and possible improvements to the instrument are also discussed with respect to the next generation of particle detectors

    Long-lasting injection of solar energetic electrons into the heliosphere

    Get PDF
    The main sources of solar energetic particle (SEP) events are solar flares and shocks driven by coronal mass ejections (CMEs). While it is generally accepted that energetic protons can be accelerated by shocks, whether or not these shocks can also efficiently accelerate solar energetic electrons is still debated. In this study we present observations of the extremely widespread SEP event of 26 Dec 2013. To the knowledge of the authors, this is the widest longitudinal SEP distribution ever observed together with unusually long-lasting energetic electron anisotropies at all observer positions. Further striking features of the event are long-lasting SEP intensity increases, two distinct SEP components with the second component mainly consisting of high-energy particles, a complex associated coronal activity including a pronounced signature of a shock in radio type-II observations, and the interaction of two CMEs early in the event. The observations require a prolonged injection scenario not only for protons but also for electrons. We therefore analyze the data comprehensively to characterize the possible role of the shock for the electron event. Remote-sensing observations of the complex solar activity are combined with in-situ measurements of the particle event. We also apply a Graduated Cylindrical Shell (GCS) model to the coronagraph observations of the two associated CMEs to analyze their interaction. We find that the shock alone is likely not responsible for this extremely wide SEP event. Therefore we propose a scenario of trapped energetic particles inside the CME-CME interaction region which undergo further acceleration due to the shock propagating through this region, stochastic acceleration, or ongoing reconnection processes inside the interaction region. The origin of the second component of the SEP event is likely caused by a sudden opening of the particle trap.Comment: Reproduced with permission from Astronomy & Astrophysics, \c{opyright} ES

    Experience of external collaboration in Organizational Behavior and Change Management subject in practical lesson

    Full text link
    [EN] University students are used to attend traditional sessions where the teacher explains theoretical lessons, the contents of which are then applied in practical sessions with identical scripts established to follow the same scheme in practice and theory. This scheme of operation has been traditionally followed, but in some cases, it has caused fatigue and lack of motivation to the students. In the subject ¿Organizational Behavior and Change Management¿ (formerly ¿Comportamiento Organizativo y Gestión del Cambio¿) in the Degree of Informatics Engineering, we have been getting some feedback from students on how to improve the results of the students learning results [1]. Consequently to the received feedback, we have decided to put into practice the participation of external speakers (with high experience in topics related to the subject) that show students the most important values of the content of the subject learning guide, through dynamic group discussion sessions where different topics from those studied in the theoretical sessions are discussed in practical sessions. In this paper we propose the participation of external speakers in practical sessions, as a way to break the routine of academic courses (where teacher of the subject is usually the only speaker in both practical and theoretical sessions). We want to assess the impact that this breakage of the routine can cause in the improvement of the student's perception regarding the evolution of the classes. The second impact that we want to measure is how it affects the motivation of the students, in the practical sessions, the proposal of topics of debate very different from the theoretical themes of the subject, but at the same time directly related to the subject itself. In summary, the expected result of this practical research activity is the evaluation of how students react to these unexpected practical sessions, in an unexpected environment, and with unexpected speakers. This impact will be measured based on the improvement of the assessment that students show as a result of their practical learning.Guerola-Navarro, V.; Oltra Badenes, RF.; Gil Gómez, H.; Herrero-Casanova, M. (2019). Experience of external collaboration in Organizational Behavior and Change Management subject in practical lesson. IATED. 289-294. https://doi.org/10.21125/iceri.2019.0113S28929

    Statistical results for solar energetic electron spectra observed over 12 yr with STEREO/SEPT

    Get PDF
    This work presents a statistical analysis of near-relativistic solar energetic electron event spectra near 1 au. We use measurements of the Solar Electron and Proton Telescope (SEPT) on board STEREO in the energy range of 45–425 keV and utilize the SEPT electron event list containing all electron events observed by STEREO A and STEREO B from 2007 through 2018. We select 781 events with significant signal-to-noise ratios for our analysis and fit the spectra with single or broken-power-law functions of energy. We find 437 events showing broken power laws and 344 events only showing a single power law in the energy range of SEPT. For those events with broken power laws, we find a mean break energy of about 120 keV. We analyze the dependence of the spectral index on the rise times and peak intensities of the events as well as on the presence of relativistic electrons. The results show a relation between the power law spectral index and the rise times of the events with softer spectra belonging to rather impulsive events. Long rise-time events are associated with hard spectra as well as with the presence of higher-energy (>0.7 MeV) electrons. This group of events cannot be explained by a pure flare scenario but suggests an additional acceleration mechanism, involving a prolonged acceleration and/or injection of the particles. A dependence of the spectral index on the longitudinal separation from the parent solar source region was not found. A statistical analysis of the spectral indices during impulsively rising events where the rise times are below 20 minutes is also shown.Agencia Estatal de Investigació

    The Energetic Particle Detector: Energetic particle instrument suite for the Solar Orbiter mission

    Get PDF
    After decades of observations of solar energetic particles from space-based observatories, relevant questions on particle injection, transport, and acceleration remain open. To address these scientific topics, accurate measurements of the particle properties in the inner heliosphere are needed. In this paper we describe the Energetic Particle Detector (EPD), an instrument suite that is part of the scientific payload aboard the Solar Orbiter mission. Solar Orbiter will approach the Sun as close as 0.28 au and will provide extra-ecliptic measurements beyond ∼30° heliographic latitude during the later stages of the mission. The EPD will measure electrons, protons, and heavy ions with high temporal resolution over a wide energy range, from suprathermal energies up to several hundreds of megaelectronvolts/nucleons. For this purpose, EPD is composed of four units: the SupraThermal Electrons and Protons (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) plus the Instrument Control Unit that serves as power and data interface with the spacecraft. The low-energy population of electrons and ions will be covered by STEP and EPT, while the high-energy range will be measured by HET. Elemental and isotopic ion composition measurements will be performed by SIS and HET, allowing full particle identification from a few kiloelectronvolts up to several hundreds of megaelectronvolts/nucleons. Angular information will be provided by the separate look directions from different sensor heads, on the ecliptic plane along the Parker spiral magnetic field both forward and backwards, and out of the ecliptic plane observing both northern and southern hemispheres. The unparalleled observations of EPD will provide key insights into long-open and crucial questions about the processes that govern energetic particles in the inner heliosphere.Ministerio de Economía y CompetitividadAgencia Estatal de Investigació

    Characterisation of suprathermal electron pitch-angle distributions: Bidirectional and isotropic periods in solar wind

    Get PDF
    Context. Suprathermal electron pitch-angle distributions (PADs) contain substantial information about the magnetic topology of the solar wind. Their characterisation and quantification allow us to automatically identify periods showing certain characteristics. Aims. This work presents a robust automatic method for the identification and statistical study of two different types of PADs: bidirectional suprathermal electrons (BDE, often associated with closed magnetic structures) and isotropic (likely corresponding to solar-detached magnetic field lines or highly scattered electrons). Methods. Spherical harmonics were fitted to the observed suprathermal PADs of the 119&-193 eV energy channel of STEREO/SWEA from March 2007 to July 2014, and they were characterised using signal processing analysis in order to identify periods of isotropic and bidirectional PADs. The characterisation has been validated by comparing the results obtained here with those of previous studies. Results. Interplanetary coronal mass ejections (ICMEs) present longer BDE periods inside the magnetic obstacles. A significant amount of BDE remain after the end of the ICME. Isotropic PADs are found in the sheath of the ICMEs, and at the post-ICME region likely due to the erosion of the magnetic field lines. Both isotropy and BDE are solar-cycle dependent. The isotropy observed by STEREO shows a nearly annual periodicity, which requires further investigation. There is also a correspondence between the number of ICMEs observed and the percentage of time showing BDE. Conclusions. A method to characterise PADs has been presented and applied to the automatic identification of two relevant distributions that are commonly observed in the solar wind, such as BDE and isotropy. Four catalogues (STEREO-A and STEREO-B for isotropic and BDE periods of at least 10 min) based on this identification are provided for future applications.Agencia Estatal de Investigació

    The Solar Orbiter Science Activity Plan: translating solar and heliospheric physics questions into action

    Get PDF
    Solar Orbiter is the first space mission observing the solar plasma both in situ and remotely, from a close distance, in and out of the ecliptic. The ultimate goal is to understand how the Sun produces and controls the heliosphere, filling the Solar System and driving the planetary environments. With six remote-sensing and four in-situ instrument suites, the coordination and planning of the operations are essential to address the following four top-level science questions: (1) What drives the solar wind and where does the coronal magnetic field originate?; (2) How do solar transients drive heliospheric variability?; (3) How do solar eruptions produce energetic particle radiation that fills the heliosphere?; (4) How does the solar dynamo work and drive connections between the Sun and the heliosphere? Maximising the mission"s science return requires considering the characteristics of each orbit, including the relative position of the spacecraft to Earth (a ecting downlink rates), trajectory events (such as gravitational assist manoeuvres), and the phase of the solar activity cycle. Furthermore, since each orbit"s science telemetry will be downloaded over the course of the following orbit, science operations must be planned at mission level, rather than at the level of individual orbits. It is important to explore the way in which those science questions are translated into an actual plan of observations that fits into the mission, thus ensuring that no opportunities are missed. First, the overarching goals are broken down into specific, answerable questions along with the required observations and the so-called Science Activity Plan (SAP) is developed to achieve this. The SAP groups objectives that require similar observations into Solar Orbiter Observing Plans (SOOPs), resulting in a strategic, top-level view of the optimal opportunities for science observations during the mission lifetime. This allows for all four mission goals to be addressed. In this paper, we introduce Solar Orbiter"s SAP through a series of examples and the strategy being followed.Agencia Estatal de Investigació

    Comparative Cytotoxic Activity of Hydroxytyrosol and Its Semisynthetic Lipophilic Derivatives in Prostate Cancer Cells

    Get PDF
    A high adherence to a Mediterranean diet has been related to numerous beneficial effects in human health, including a lower incidence and mortality of prostate cancer (PCa). Olive oil is an important source of phenolic bioactive compounds, mainly hydroxytyrosol (HT), of this diet. Because of the growing interest of this compound and its derivatives as a cancer chemopreventive agent, we aimed to compare the in vitro effect of HT isolated from olive mill wastewaters and five semisynthetic alkyl ether, ester, and nitro-derivatives against prostate cancer (PCa) cell lines. The effect in cell proliferation was determined in RWPE-1, LNCaP, 22Rv1, and PC-3 cells by resazurin assay, the effect in cell migration by wound healing assay, and tumorsphere and colony formation were evaluated. The changes in key signaling pathways involved in carcinogenesis were assessed by using a phosphorylation pathway profiling array and by Western blotting. Antiproliferative effects of HT and two lipophilic derivatives [hydroxytyrosyl acetate (HT-Ac)/ethyl hydroxytyrosyl ether (HT-Et)] were significantly higher in cancerous PC-3 and 22Rv1 cells than in non-malignant RWPE-1 cells. HT/HT-Ac/HT-Et significantly reduced migration capacity in RWPE-1 and PC-3 and prostatosphere size and colony formation in 22Rv1, whereas only HT-Ac and HT-Et reduced these functional parameters in PC-3. The cytotoxic effect in 22Rv1 cells was correlated with modifications in the phosphorylation pattern of key proteins, including ERK1/2 and AKT. Consistently, HT-Ac and HT-Et decreased p-AKT levels in PC-3. In sum, our results suggest that HT and its lipophilic derivatives could be considered as potential therapeutic tools in PCa

    Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer

    Get PDF
    Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient′s cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC

    Evidence of a complex structure within the 2013 August 19 coronal mass ejection: Radial and longitudinal evolution in the inner heliosphere

    Get PDF
    Context. Late on 2013 August 19, a coronal mass ejection (CME) erupted from an active region located near the far-side central meridian from Earth’s perspective. The event and its accompanying shock were remotely observed by the STEREO-A, STEREO-B, and SOHO spacecraft. The interplanetary counterpart (ICME) was intercepted by MESSENGER near 0.3 au and by both STEREO-A and STEREO-B near 1 au, which were separated from each other by 78° in heliolongitude. Aims. The main objective of this study is to follow the radial and longitudinal evolution of the ICME throughout the inner heliosphere and to examine possible scenarios for the different magnetic flux-rope configuration observed on the solar disk and measured in situ at the locations of MESSENGER and STEREO-A, separated by 15° in heliolongitude, and at STEREO-B, which detected the ICME flank. Methods. Solar disk observations are used to estimate the “magnetic flux-rope type”, namely, the magnetic helicity, axis orientation, and axial magnetic field direction of the flux rope. The graduated cylindrical shell model is used to reconstruct the CME in the corona. The analysis of in situ data, specifically the plasma and magnetic field, is used to estimate the global interplanetary shock geometry and to derive the magnetic flux-rope type at different in situ locations, which is compared to the type estimated from solar disk observations. The elliptical cylindrical analytical model is used for the in situ magnetic flux-rope reconstruction. Results. Based on the CME geometry and on the spacecraft configuration, we find that the magnetic flux-rope structure detected at STEREO-B belongs to the same ICME detected at MESSENGER and STEREO-A. The opposite helicity deduced at STEREO-B might be due to that fact that it intercepted one of the legs of the structure far from the flux-rope axis, in contrast to STEREO-A and MESSENGER, which were crossing through the core of the magnetic flux rope. The different flux-rope orientations measured at MESSENGER and STEREO-A probably arise because the two spacecraft measure a curved, highly distorted, and rather complex magnetic flux-rope topology. The ICME may have suffered additional distortion in its evolution in the inner heliosphere, such as the west flank propagating faster than the east flank when arriving near 1 au. Conclusions. This work illustrates how a wide, curved, highly distorted, and rather complex CME showed different orientations as observed on the solar disk and measured in situ at 0.3 au and near 1 au. Furthermore, the work shows how the ambient conditions can significantly affect the expansion and propagation of the CME and ICME, introducing additional irregularities to the already asymmetric eruption. The study also manifests how these complex structures cannot be directly reconstructed with the currently available models and that multi-point analysis is of the utmost importance in such complex events.Agencia Estatal de Investigació
    corecore