6 research outputs found

    Encoder-Decoder Approach to Predict Airport Operational Runway Configuration A case study for Amsterdam Schiphol airport

    Get PDF
    The runway configuration of an airport is the com- bination of runways that are active for arrivals and departures at any time. The runway configuration has a major influence on the capacity of the airport, taxiing times, the occupation of parking stands and taxiways, as well as on the management of traffic in the airspace surrounding the airport. The runway configuration of a given airport may change several times during the day, depending on the weather, air traffic demand and noise abatement rules, among other factors. This paper proposes an encoder-decoder model that is able to predict the future runway configuration sequence of an airport several hours upfront. In contrast to typical rule-based approaches, the proposed model is generic enough to be applied to any airport, since it only requires the past runway configuration history and the forecast traffic demand and weather in the prediction horizon. The performance of the model is assessed for the Amsterdam Schiphol Airport using three years of traffic, weather and runway use data.Peer ReviewedPostprint (published version

    Exploitation of Machine Learning to predict airport Runway Utilisation relative to known precursors and abnormality

    No full text
    There is currently no supplementary operational system that assists the Air Traffic Control Officer (ATCO) in attaining accurate, fast, intuitive and interpretable predictions of Aircraft Safety Performance (ASP) enablers through suitable visualisation on the runway or on final approach. Thus, this study intends to develop an arrival ATCO support decision tool named the Runway Utilisation (RU) support tool.Aerospace Transport & Operation

    A novel machine learning model to predict abnormal Runway Occupancy Times and observe related precursors

    No full text
    Accidents on the runway triggered the development and implementation of mitigation strategies. Therefore, the airline industry is moving toward proactive risk management, which aims to identify and predict risk percursors and to mitigate risks before accidents occur. For certain predictions Machine Learning techniques can be used. Although many studies have explored and applied novel Machine Learning techniques on different aircraft Radar and operational Taxi data, the identification and prediction of abnormal Runway Occupancy Times and the observation of related percursors are not well developed. In our previous papers, three feasible methods were introduced: Lasso, Multi-Layer Perceptiona and Neural Networks to predict the Taxi-Out Time on the taxiway and the time to Fly and True Airspeed profile on final approach. This paper presents a new Machine Learing method, where we merge these feasible Machine Learning techniques for prediction the abnormal Runway Occupancy times of unique radar data patterns. Additionally we use in this study the Regression Tree method to observe key related precursors extracted from the top 10 features. Compared with existing methods, the new method no longer requires predefined criteria or domain knowledge. Tests were conductioned using runway and final approach aircraft radar data consisting of 78,321 Charles de Gaulle flights and were benchmarked against 500,000 Vienna flights

    Evaluation of feasible machine learning techniques for predicting the time to fly and aircraft speed profile on final approach: Predictive dynamic support tool on final approach

    No full text
    currently, at many airports, the runway throughput is the limiting factor for the overall capacity. Among the most important constraining parameters is the separation minima expressed in distance. On the top of these minima, the difference of the leader and follower aircraft speed profiles imposes to consider buffer to cope with compression effect. Currently, Air Traffic Control Officers (ATCO’s) take these buffers on the basis of their training and experience. However, this experience will not be sufficient to safety deploy advanced concepts, like pair-wise separations, that increase variability in the separations to be delivered and therefore in the compression buffer to be considered. Systematic analysis of years of radar tracks has allowed to better predict the buffers to apply by characterising the time to fly (T2F) given a separation distance and True Airspeed (TAS) profile as a function of meteorological parameters.This paper presents how Machine Learning (ML) techniques may be used for predicting the T2F and TAS profile on final approach. Different ML techniques will be assessed on their forecast performance, computational time and amount of data needed for delivering a reliable prediction. The techniques will be applied on 2 different major European airports traffic and will be benchmarked against Optimized Runway Delivery (ORD) study using a Model Based Approach (MBA) for deriving the T2F and TAS. As a result the most efficient ML techniques will be applied on two case studies for predicting the T2F and TAS.Aerospace Transport & Operation

    A novel machine learning model to predict abnormal Runway Occupancy Times and observe related precursors

    No full text
    Accidents on the runway triggered the development and implementation of mitigation strategies. Therefore, the airline industry is moving toward proactive risk management, which aims to identify and predict risk percursors and to mitigate risks before accidents occur. For certain predictions Machine Learning techniques can be used. Although many studies have explored and applied novel Machine Learning techniques on different aircraft Radar and operational Taxi data, the identification and prediction of abnormal Runway Occupancy Times and the observation of related percursors are not well developed. In our previous papers, three feasible methods were introduced: Lasso, Multi-Layer Perceptiona and Neural Networks to predict the Taxi-Out Time on the taxiway and the time to Fly and True Airspeed profile on final approach. This paper presents a new Machine Learing method, where we merge these feasible Machine Learning techniques for prediction the abnormal Runway Occupancy times of unique radar data patterns. Additionally we use in this study the Regression Tree method to observe key related precursors extracted from the top 10 features. Compared with existing methods, the new method no longer requires predefined criteria or domain knowledge. Tests were conductioned using runway and final approach aircraft radar data consisting of 78,321 Charles de Gaulle flights and were benchmarked against 500,000 Vienna flights.Aerospace Transport & Operation
    corecore