2,393 research outputs found

    The family of quaternionic quasi-unitary Lie algebras and their central extensions

    Full text link
    The family of quaternionic quasi-unitary (or quaternionic unitary Cayley--Klein algebras) is described in a unified setting. This family includes the simple algebras sp(N+1) and sp(p,q) in the Cartan series C_{N+1}, as well as many non-semisimple real Lie algebras which can be obtained from these simple algebras by particular contractions. The algebras in this family are realized here in relation with the groups of isometries of quaternionic hermitian spaces of constant holomorphic curvature. This common framework allows to perform the study of many properties for all these Lie algebras simultaneously. In this paper the central extensions for all quasi-simple Lie algebras of the quaternionic unitary Cayley--Klein family are completely determined in arbitrary dimension. It is shown that the second cohomology group is trivial for any Lie algebra of this family no matter of its dimension.Comment: 17 pages, LaTe

    Central extensions of the families of quasi-unitary Lie algebras

    Get PDF
    The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families of algebras is given.Comment: 23 pages. Latex2e fil

    Superintegrability on sl(2)-coalgebra spaces

    Full text link
    We review a recently introduced set of N-dimensional quasi-maximally superintegrable Hamiltonian systems describing geodesic motions, that can be used to generate "dynamically" a large family of curved spaces. From an algebraic viewpoint, such spaces are obtained through kinetic energy Hamiltonians defined on either the sl(2) Poisson coalgebra or a quantum deformation of it. Certain potentials on these spaces and endowed with the same underlying coalgebra symmetry have been also introduced in such a way that the superintegrability properties of the full system are preserved. Several new N=2 examples of this construction are explicitly given, and specific Hamiltonians leading to spaces of non-constant curvature are emphasized.Comment: 12 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    Superintegrability on N-dimensional spaces of constant curvature from so(N+1) and its contractions

    Full text link
    The Lie-Poisson algebra so(N+1) and some of its contractions are used to construct a family of superintegrable Hamiltonians on the ND spherical, Euclidean, hyperbolic, Minkowskian and (anti-)de Sitter spaces. We firstly present a Hamiltonian which is a superposition of an arbitrary central potential with N arbitrary centrifugal terms. Such a system is quasi-maximally superintegrable since this is endowed with 2N-3 functionally independent constants of the motion (plus the Hamiltonian). Secondly, we identify two maximally superintegrable Hamiltonians by choosing a specific central potential and finding at the same time the remaining integral. The former is the generalization of the Smorodinsky-Winternitz system to the above six spaces, while the latter is a generalization of the Kepler-Coulomb potential, for which the Laplace-Runge-Lenz N-vector is also given. All the systems and constants of the motion are explicitly expressed in a unified form in terms of ambient and polar coordinates as they are parametrized by two contraction parameters (curvature and signature of the metric).Comment: 14 pages. Based on the contribution presented at the "XII International Conference on Symmetry Methods in Physics", Yerevan (Armenia), July 2006. To appear in Physics of Atomic Nucle

    Integrable potentials on spaces with curvature from quantum groups

    Full text link
    A family of classical integrable systems defined on a deformation of the two-dimensional sphere, hyperbolic and (anti-)de Sitter spaces is constructed through Hamiltonians defined on the non-standard quantum deformation of a sl(2) Poisson coalgebra. All these spaces have a non-constant curvature that depends on the deformation parameter z. As particular cases, the analogues of the harmonic oscillator and Kepler--Coulomb potentials on such spaces are proposed. Another deformed Hamiltonian is also shown to provide superintegrable systems on the usual sphere, hyperbolic and (anti-)de Sitter spaces with a constant curvature that exactly coincides with z. According to each specific space, the resulting potential is interpreted as the superposition of a central harmonic oscillator with either two more oscillators or centrifugal barriers. The non-deformed limit z=0 of all these Hamiltonians can then be regarded as the zero-curvature limit (contraction) which leads to the corresponding (super)integrable systems on the flat Euclidean and Minkowskian spaces.Comment: 19 pages, 1 figure. Two references adde

    Maximal superintegrability on N-dimensional curved spaces

    Full text link
    A unified algebraic construction of the classical Smorodinsky-Winternitz systems on the ND sphere, Euclidean and hyperbolic spaces through the Lie groups SO(N+1), ISO(N), and SO(N,1) is presented. Firstly, general expressions for the Hamiltonian and its integrals of motion are given in a linear ambient space RN+1R^{N+1}, and secondly they are expressed in terms of two geodesic coordinate systems on the ND spaces themselves, with an explicit dependence on the curvature as a parameter. On the sphere, the potential is interpreted as a superposition of N+1 oscillators. Furthermore each Lie algebra generator provides an integral of motion and a set of 2N-1 functionally independent ones are explicitly given. In this way the maximal superintegrability of the ND Euclidean Smorodinsky-Winternitz system is shown for any value of the curvature.Comment: 8 pages, LaTe

    Real-space study of the growth of magnesium on ruthenium

    Full text link
    The growth of magnesium on ruthenium has been studied by low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM). In LEEM, a layer-by-layer growth is observed except in the first monolayer, where the completion of the first layer in inferred by a clear peak in electron reflectivity. Desorption from the films is readily observable at 400 K. Real-space STM and low-energy electron diffraction confirm that sub-monolayer coverage presents a moir\'e pattern with a 1.2 nm periodicity, which evolves with further Mg deposition by compressing the Mg layer to a 2.2 nm periodicity. Layer-by-layer growth is followed in LEEM up to 10 ML. On films several ML thick a substantial density of stacking faults are observed by dark-field imaging on large terraces of the substrate, while screw dislocations appear in the stepped areas. The latter are suggested to result from the mismatch in heights of the Mg and Ru steps. Quantum size effect oscillations in the reflected LEEM intensity are observed as a function of thickness, indicating an abrupt Mg/Ru interface.Comment: 21 pages, 10 figure

    Detection/estimation of the modulus of a vector. Application to point source detection in polarization data

    Full text link
    Given a set of images, whose pixel values can be considered as the components of a vector, it is interesting to estimate the modulus of such a vector in some localised areas corresponding to a compact signal. For instance, the detection/estimation of a polarized signal in compact sources immersed in a background is relevant in some fields like astrophysics. We develop two different techniques, one based on the Neyman-Pearson lemma, the Neyman-Pearson filter (NPF), and another based on prefiltering-before-fusion, the filtered fusion (FF), to deal with the problem of detection of the source and estimation of the polarization given two or three images corresponding to the different components of polarization (two for linear polarization, three including circular polarization). For the case of linear polarization, we have performed numerical simulations on two-dimensional patches to test these filters following two different approaches (a blind and a non-blind detection), considering extragalactic point sources immersed in cosmic microwave background (CMB) and non-stationary noise with the conditions of the 70 GHz \emph{Planck} channel. The FF outperforms the NPF, especially for low fluxes. We can detect with the FF extragalactic sources in a high noise zone with fluxes >= (0.42,0.36) Jy for (blind/non-blind) detection and in a low noise zone with fluxes >= (0.22,0.18) Jy for (blind/non-blind) detection with low errors in the estimated flux and position.Comment: 11 pages, 5 figure
    corecore