216 research outputs found

    Alkylphenols and polycyclic aromatic hydrocarbons in eastern Mediterranean Spanish coastal marine bivalves

    Full text link
    This paper reports the first results on alkylphenol pollution in edible bivalves from the Spanish coast. Two sampling campaigns (July 2006 and July 2007) were carried out to determine the concentration of nonylphenol (NP), octylphenol (OP), and eight polycyclic aromatic hydrocarbons (PAHs) in wild mussels (Mytilus galloprovincialys) and clams (Donax trunculus) at 14 sampling sites along the eastern Mediterranean Spanish coast. The results show that NP is the predominant alkylphenol, being the port of Valencia the most polluted area (up to 147 mu g/kg wet weight in clams). Moving away from the ports the concentration of NP in bivalves decreased. OP concentration was below its detection limit in most of the studied areas and its maximum concentration (6 mu g/kg w/w) was measured in clams from the port of Sagunto. The presence of low levels of PAHs was observed in most of the studied areas. The total PAHs concentration (i.e., sum of the eight measured PAHs) achieved a maximum value of 10.09 mu g/kg w/w in the north coast of Valencia city. The distribution pattern of the individual PAHs showed that both pollution sources petrogenic and pyrolytic were present in the sampled areas. Fluoranthene was the most abundant PAH in mussels while benzo(b)fluoranthene in clams. The maximum concentration of 10 mu g/kg w/w for benzo(a)pyrene established by the European Commission was never reached, indeed sampled bivalves showed concentrations 10 times lower than this reference value. Thus, they can be considered safe for human consumption. Despite the low contamination levels, the results show an overall pollution of bivalves by alkylphenol and PAHs as well as an increment in the number of polluted areas from 2006 to 2007. Thus, periodical sampling campaigns should be carried out to monitor the long-term tendency of these toxic and persistent pollutants. © 2010 Springer Science+Business Media B.V.Financial support from Conselleria de Medio Ambiente, Agua, Urbanismo y Vivienda de la Generalitat Valenciana (Application of Water Framework Directive 2000/60/EC on endocrine disruptors and priority substances in coastal areas in the Comunidad Valenciana) is gratefully acknowledged.Bouzas Blanco, A.; Aguado García, D.; Martí Ortega, N.; Pastor, J.; Herraez, R.; Campins, P.; Seco Torrecillas, A. (2011). Alkylphenols and polycyclic aromatic hydrocarbons in eastern Mediterranean Spanish coastal marine bivalves. Environmental Monitoring and Assessment. 176(1-4):169-181. doi:10.1007/s10661-010-1574-5S1691811761-4Antizar-Ladislao, B. (2009). Polycyclic aromatic hydrocarbons, polycholirnated biphenyls, phthalates and organotins in northern Atlantic Spain’s coastal marine sediments. Journal of Environmental Monitoring, 11, 85–91.Asikainen, A. H., Kuusisto, M. P., Hiltunen, M. A., & Ruuskanen, J. (2002). Occurrence and destruction of PAHs, PCBs, ClPhs, ClBzs, and PCDD/Fs in ash from gasification of straw. Environmental Science and Technology, 36, 2193–2197.Barreira, L. A., Mudge, S. M., & Bebianno, M. J. (2007). Polycyclic aromatic hydrocarbons in clams Ruditapes decussatus (Linnaeus, 1758). Journal of Environmental Monitoring, 9, 187–198.Baumard, P., Budzinski, H., & Garrigues, P. (1998). PAHs in Arcachon Bay, France: Origin and biomonitoring of caged organisms. Marine Pollution Bulletin, 36, 577–586.Baumard, P., Budzinski, H., Garrigues, P., Narbonne, J. F., Burgeot, T., Miche, X., et al. (1999). Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability. Marine Environmental Research, 47, 415–439.Binelli, A., & Provini, A. (2003). POPs in edible clams from different Italian and European markets and possible human health risk. Marine Pollution Bulletin, 46, 879–886.Boscolo, R., Cacciatore, F., & Giovanardi, O. (2007). Polycyclic aromatic hydrocarbons (PAHs) in transplanted Manila clams (Tapes philippinarum) from the Lagoon of Venice as assessed by PAHs/shell weight index: A preliminary study. Marine Pollution Bulletin, 55, 485–493.Campíns, P., Verdú, J., Sevillano, A., Molins, C., & Herráez, R. (2008). New micromethod combining miniaturized matrix solid-phase dispersion and in-tube in-valve solid-phase microextraction for estimating polycyclic aromatic hydrocarbons in bivalves. Journal of Chromatography A, 1211, 13–21.David, A., Fenet, H., & Gomez, E. (2009). Alkylphenols in marine environments: Distribution monitoring strategies and detection considerations. Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2009.04.021 .EC (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities, L, 327, 1.EC (2005). Commission regulation (EC) No 2008/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons. Official Journal of the European Communities, L, 34, 3.Ferrara, F., Fabietti, F., Delise, M., Piccioli-Bocca, A., & Funari, E. (2001). Alkylphenolic compounds in edible mollusc of the Adriatic Sea (Italy). Environmental Science and Technology, 35, 3109–3112.Francioni, E., A. de L. R., Wagener, Scofield, A. L., Depledge, M. H., & Cavalier, B. (2007). Evaluation of the mussel Perna perna as a biomonitor of polycyclic aromatic hydrocarbon (PAH) exposure and effects. Marine Pollution Bulletin, 54, 329–338.Gilroy, D. J. (2000). Derivation of shellfish harvest reopening criteria following the new Carissa oil spill in Coos Bay, Oregon. Journal of Toxicology and Environmental Health, 60, 317–329.Goldberg, E. D., & Bertine, K. K. (2000). Beyond the mussel watch—New directions for monitoring marine. Science of the Total Environment, 247, 165–174.Grandby, K., & Spliid, N. H. (1995). Hydrocarbon and organochlorines in common mussels from the Kattegat and the Belts and their relation to condition indices. Marine Pollution Bulletin, 30, 74–82.Isobe, T., Nishiyama, H., Nakashima, A., & Takada, H. (2001). Distribution and behavior of nonylphenol, octylphenol, and nonylphenol monoethoxylate in Tokyo metropolitan area: Their association with aquatic particles and sedimentary distributions. Environmental Science and Technology, 35, 1041–1049.Isobe, T., Takada, H., Kanai, M., Tsutsumi, S., Isobe, K. O., Boonyatumanond, R., et al. (2007). Distribution of polycyclic aromatic hydrocarbons (PAHs) and phenolic endocrine disrupting chemicals in South and Southeast Asian mussels. Environmental Monitoring Assessment, 135, 423–440.Jackson, J. E. (2003). A user’s guide to principal components. NJ: Wiley.Khairy, M. A., Kolb, M., Mostafa, A. R., EL-Fiky, A., & Bahadir, M. (2009). Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semienclosed basin affected by human activities (Abu Qui Bay, Egypt). Journal of Hazardous Material. doi: 10.1016/j.jhazmat.2009.04.084 .Koh, C. H., Khim, J. S., Kannan, K., Villeneuve, D. L., Senthil Kumar, K., & Giesy, J. P. (2004). Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environmental Pollution, 132, 489–501.Law, R. J., Kelly, C. A., Baker, K. L., Langford, K. H., & Bartlett, T. (2002). Polycyclic aromatic hydrocarbons in sediments, mussels and crustacea around a former gasworks site in Shoreham-by-Sea, UK. Marine Pollution Bulletin, 44, 903–911.Li, D., Dong, M., Shim, W. J., Yim, U. H., Hong, S., & Kannan, N. (2008). Distribution characteristics of nonylphenolic chemicals in Masan Bay environments. Korea. Chemosphere, 71, 1162–1172.Massara Paletto, V., Commendatore, M. G., & Esteves, J. L. (2008). Hydrocarbon levels in sediments and bivalve mollusks from Bahía Nueva (Patagonia, Argentina): An assessment of probable origin and bioaccumulation factors. Baseline/Marine Pollution Bulletin, 56, 2082–2105.Navarro, A., Endo, S., Gocht, T., Barth, J. A. C., Lacorte, S., Barceló, D., et al. (2009). Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments. Environmental Pollution, 157, 698–703.Nesto, N., Romano, S., Moschino, V., Mauri, M., & Da Ros, L. (2007). Bioaccumulation and biomarker responses of trace metals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy. Marine Pollution Bulletin, 55, 469–484.OSPAR Commision (2000). Quality Status Report 2000. London: OSPAR.Palma-Fleming, H., Asencio, A. J., & Gutierrez, E. (2004). Polycyclic aromatic hydrocarbons in sediments and mussels of Corral Bay, south central Chile. Journal of Environmental Monitoring, 6, 229–233.Senthil Kumar, K., Sajwan, K. S., Richardson, J. P., & Kannan, K. (2008). Contamination profiles of heavy metals, organochlorine pesticides, polycyclic aromatic hydrocarbons and alkylphenols in sediment and oyster collected from marsh/estuarine Savannah GA, USA. Marine Pollution Bulletin, 56, 136–162.Solé, M., Porte, C., Barceló, D., & Albigés (2000). Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean). Marine Pollution Bulletin, 40(9), 746–753.Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: A critical review on occurrence, fate, toxicity and treatment in wastewaters. Environmental International, 34, 1033–1049.Soriano, J. A., Viñas, L., Franco, M. A., González, J. J., Ortiz, L., Bayona, J. M., et al. (2006). Spatial and temporal trends of petroleum hydrocarbons in wild mussels from the Galician coast (NW Spain) affected by the Prestige oil spill. Science of the Total Environment, 370, 80–90.White, K. L. (1986). An overview of immunotoxicology and carcinogenic polycyclic aromatic hydrocarbons. Journal of Environmental Science and Health. Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 2, 163–202

    Teleseisms monitoring using chirped-pulse φOTDR

    Get PDF
    Monitoring of seismic activity around the word is a topic of high interest for the analysis and understanding of deep Earth dynamics. However, the deployment of a homogeneous network of seismic stations both onshore and offshore poses a strong economic challenge that makes this solution practically inviable. Using the pre-existing fiber optical network for seismic monitoring arises as an excellent solution with important advantages in terms of ubiquity and cost. In this communication, we present the detection of an M8.2 earthquake occurred in Fiji Island using distributed acoustic sensing based on chirped-pulse φOTDR. Two sensors were placed simultaneously at two different locations at >9,000 km from the earthquake epicenter: a metropolitan area and a submarine environment. The recorded data is postprocessed using a 2D linear filter to cancel out environmental noise. The resulting signals are compared with the signals acquired by nearby seismometers. The attained good matching between the recorded data and the seismometer data shows the strong potential of the use of the already-deployed communication fiber network for teleseism monitoring

    CPSP-web-tools: a server for 3D lattice protein studies

    Get PDF
    Summary: Studies on proteins are often restricted to highly simplified models to face the immense computational complexity of the associated problems. Constraint-based protein structure prediction (CPSP) tools is a package of very fast algorithms for ab initio optimal structure prediction and related problems in 3D HP-models [cubic and face centered cubic (FCC)]. Here, we present CPSP-web-tools, an interactive online interface of these programs for their immediate use. They include the first method for the direct prediction of optimal energies and structures in 3D HP side-chain models. This newest extension of the CPSP approach is described here for the first time

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Time-expanded FOTDR based on Orthogonal Polarization Frequency Comb generation

    Get PDF
    Phase-sensitive Optical Time-Domain Reflectometry (ΦOTDR) has emerged as an effective and high-performance solution within the realm of Distributed Optical Fiber Sensing (DOFS) technologies, which has promoted its use in an ever-growing number of fields. The challenges arisen by new operation fields demand surpassing the historical trade-offs in this technology, specially aiming for higher resolution without jeopardizing the system simplicity and cost-effectiveness. In this context, time-expanded (TE-)ΦOTDR has been recently proposed as a DOFS solution delivering cm-range resolution with sub-MHz detection and acquisition bandwidths. It is based on the use of an interferometric scheme that employs a dual frequency comb (DFC), consisting of two mutually coherent optical frequency combs with dissimilar repetition rates. In this paper, we present a novel DFC generation scheme for TE-ΦOTDR that exploits the polarization orthogonality. In particular, our approach considerably increases the common path followed by the two frequency combs, thus reducing instability and noise as compared to the conventional generation scheme. Additionally, we employ an IQ modulation scheme with two PRBS generators that increases the scalability of the interrogator while severely reducing its cost and complexity. Results show a reduction in the noise amplitude spectral density especially at low frequency values, which corroborates the stability enhancement of this proposed architecture as compared to the conventional scheme

    Distributed acoustic sensing for seismic activity monitoring

    Get PDF
    Continuous, real-time monitoring of surface seismic activity around the globe is of great interest for acquiring new insight into global tomography analyses and for recognition of seismic patterns leading to potentially hazardous situations. The already-existing telecommunication fiber optic network arises as an ideal solution for this application, owing to its ubiquity and the capacity of optical fibers to perform distributed, highly sensitive monitoring of vibrations at relatively low cost (ultra-high density of point sensors available with minimal deployment of new equipment). This perspective article discusses early approaches on the application of fiber-optic distributed acoustic sensors (DASs) for seismic activity monitoring. The benefits and potential impact of DAS technology in these kinds of applications are here illustrated with new experimental results on teleseism monitoring based on a specific approach: the so-called chirped-pulse DAS. This technology offers promising prospects for the field of seismic tomography due to its appealing properties in terms of simplicity, consistent sensitivity across sensing channels, and robustness. Furthermore, we also report on several signal processing techniques readily applicable to chirped-pulse DAS recordings for extracting relevant seismic information from ambient acoustic noise. The outcome presented here may serve as a foundation for a novel conception for ubiquitous seismic monitoring with minimal investment

    Monitoring of a highly flexible aircraft model wing using time-expanded phase-sensitive OTDR

    Get PDF
    In recent years, the use of highly flexible wings in aerial vehicles (e.g., aircraft or drones) has been attracting increasing interest, as they are lightweight, which can improve fuel-efficiency and distinct flight performances. Continuous wing monitoring can provide valuable information to prevent fatal failures and optimize aircraft control. In this paper, we demonstrate the capabilities of a distributed optical fiber sensor based on time-expanded phase-sensitive optical time-domain reflectometry (TE-ΦOTDR) technology for structural health monitoring of highly flexible wings, including static (i.e., bend and torsion), and dynamic (e.g., vibration) structural deformation. This distributed sensing technology provides a remarkable spatial resolution of 2 cm, with detection and processing bandwidths well under the MHz, arising as a novel, highly efficient monitoring methodology for this kind of structure. Conventional optical fibers were embedded in two highly flexible specimens that represented an aircraft wing, and different bending and twisting movements were detected and quantified with high sensitivity and minimal intrusiveness

    Impact of Liver Inflammation on Bile Acid Side Chain Shortening and Amidation

    Get PDF
    Bile acid (BA) synthesis from cholesterol by hepatocytes is inhibited by inflammatory cytokines. Whether liver inflammation also affects BA side chain shortening and conjugation was investigated. In human liver cell lines (IHH, HepG2, and HepaRG), agonists of nuclear receptors including the farnesoid X receptor (FXR), liver X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) did not affect the expression of BA-related peroxisomal enzymes. In contrast, hepatocyte nuclear factor 4? (HNF4?) inhibition down-regulated acyl-CoA oxidase 2 (ACOX2). ACOX2 was repressed by fibroblast growth factor 19 (FGF19), which was prevented by extracellular signal-regulated kinase (ERK) pathway inhibition. These changes were paralleled by altered BA synthesis (HPLC-MS/MS). Cytokines able to down-regulate cholesterol-7?-hydroxylase (CYP7A1) had little effect on peroxisomal enzymes involved in BA synthesis except for ACOX2 and bile acid-CoA:amino acid N-acyltransferase (BAAT), which were down-regulated, mainly by oncostatin M (OSM). This effect was prevented by Janus kinase (JAK) inhibition, which restored BA side chain shortening and conjugation. The binding of OSM to the extracellular matrix accounted for a persistent effect after culture medium replacement. In silico analysis of four databases (n = 201) and a validation cohort (n = 90) revealed an inverse relationship between liver inflammation and ACOX2/BAAT expression which was associated with changes in HNF4? levels. In conclusion, BA side chain shortening and conjugation are inhibited by inflammatory effectors. However, other mechanisms involved in BA homeostasis counterbalance any significant impact on the serum BA profile
    corecore