4,658 research outputs found

    Novel applications of the NASA/GSFC Viterbi decoder hardware simulator

    Get PDF
    The NASA/GSFC developed an all digital, real time, programmable Viterbi decoder simulator operating at rates up to 6 Msps. With this simulator, the bit error rate (BER) performance of convolutionally encoded/Viterbi decoded Shuttle-TDRSS return link channels under pulsed radio frequency interference (RFI) conditions has been predicted. The principles of the simulator are described with special emphasis on the channel simulator and the essential interaction between CLASS software and the simulator. The sensitivity of coded BER as function of several illustrative RFI parameters is discussed for two typical Shuttle-TDRSS return link configurations

    Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    Get PDF
    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks

    An investigation of hydraulic-line resonance and its attenuation

    Get PDF
    An investigation of fluid resonance in high-pressure hydraulic lines has been made with two types of fluid dampers (or filters) installed in the line. One type involved the use of one or more closed-end tubes branching at right angles from a main line, and the other type was a fluid muffler installed in-line. These devices were evaluated in forced vibration tests with oscillatory disturbances over a 1000-Hz range applied to one end of the line and with oscillatory pressures measured at various stations along the main pipe. Limited applications of acoustic-wave theory to the branched systems are also included. Results show varying attenuations of pressure perturbations, depending on the number and location of branches and the type of muffler. Up to three branches were used in the branch-resonator study, and the largest frequency range with maximum attenuation was obtained for a three-branch configuration. The widest frequency ranges with significant attenuations were obtained with two types of fluid mufflers

    Emittance growth due to beam-beam effects with a static offset in collision in the LHC

    Get PDF
    Under nominal operational conditions, the LHC bunches experience small unavoidable offset at the collision points caused by long range beam-beam interactions. Although the geometrical loss of luminosity is small, one may have to consider an increase of the beam transverse emittance, leading to a deterioration of the experimental conditions. In this work we evaluate and understand the dynamics of beam-beam interactions with static offsets at the collision point. A study of the emittance growth as a function of the offset amplitude in collisions is presented. Moreover, we address the effects coming from the beam parameters such as the initial transverse beam size, bunch intensity and tune

    A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct-2 homeo domain

    Get PDF
    The selective association of the herpesvirus trans-activator VP16 with the human Oct-1 homeo domain is a model for differential positive transcriptional control by homeo domains. VP16 discriminates between the closely related homeo domains of Oct-1 and Oct-2 by distinguishing among their seven amino-acid differences; these differences lie on the surface that is thought to be accessible when the homeo domain is bound to DNA. Only two of these seven differences are recognized by VP16, one in each of the first two alpha-helices of the tri-alpha-helical homeo domain. The major determinant for selective association with VP16 in vitro and VP16-induced positive control in vivo is a single glutamic acid residue at position 22 in the first alpha-helix of the Oct-1 homeo domain, but the acidic properties of this residue are not critical for association with VP16 in vitro or in vivo, because it can be replaced by glutamine with little or no deleterious effect. Mere replacement of the single corresponding alanine residue in the Oct-2 homeo domain with the key glutamic acid residue is sufficient to confer on the Oct-2 homeo domain the ability to associate with VP16 in vitro and respond to VP16-induced positive control in vivo. Thus, the specificity of homeo domain positive control can be conferred by a single amino acid difference

    E2F Activation of S Phase Promoters via Association with HCF-1 and the MLL Family of Histone H3K4 Methyltransferases

    Get PDF
    E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation

    Investigation of river eutrophication as part of a low dissolved oxygen TMDL implementation

    Get PDF
    In the United States, environmentally impaired rivers are subject to regulation under total maximum daily load (TMDL) regulations that specify watershed wide water quality standards. In California, the setting of TMDL standards is accompanied by the development of scientific and management plans directed at achieving specific water quality objectives. The San Joaquin River (SJR) in the Central Valley of California now has a TMDL for dissolved oxygen (DO). Low DO conditions in the SJR are caused in part by excessive phytoplankton growth (eutrophication) in the shallow, upstream portion of the river that create oxygen demand in the deeper estuary. This paper reports on scientific studies that were conducted to develop a mass balance on nutrients and phytoplankton in the SJR. A mass balance model was developed using WARMF, a model specifically designed for use in TMDL management applications. It was demonstrated that phytoplankton biomass accumulates rapidly in a 88 km reach where plankton from small, slow moving tributaries are diluted and combined with fresh nutrient inputs in faster moving water. The SJR-WARMF model was demonstrated to accurately predict phytoplankton growth in the SJR. Model results suggest that modest reductions in nutrients alone will not limit algal biomass accumulation, but that combined strategies of nutrient reduction and algal control in tributaries may have benefit. The SJR-WARMF model provides stakeholders a practical, scientific tool for setting remediation priorities on a watershed scale

    The Nature of the Nuclear H2O Masers of NGC 1068: Reverberation and Evidence for a Rotating Disk Geometry

    Get PDF
    We report new (1995) Very Large Array observations and (1984 - 1999) Effelsberg 100m monitoring observations of the 22 GHz H2O maser spectrum of the Seyfert 2 galaxy NGC 1068. The sensitive VLA observations provide a registration of the 22 GHz continuum emission and the location of the maser spots with an accuracy of ~ 5 mas. Within the monitoring data, we find evidence that the nuclear masers vary coherently on time-scales of months to years, much more rapidly than the dynamical time-scale. We argue that the nuclear masers are responding in reverberation to a central power source, presumably the central engine. Between October and November 1997, we detected a simultaneous flare of the blue-shifted and red-shifted satellite maser lines. Reverberation in a rotating disk naturally explains the simultaneous flaring. There is also evidence that near-infrared emission from dust grains associated with the maser disk also responds to the central engine. We present a model in which an X-ray flare results in both the loss of maser signal in 1990 and the peak of the near-infrared light curve in 1994. In support of a rotating disk geometry for the nuclear masers, we find no evidence for centripetal accelerations of the redshifted nuclear masers; the limits are +/- 0.006 km/s/year, implying that the masers are located within 2 degrees of the kinematic line-of-nodes. We also searched for high velocity maser emission like that observed in NGC 4258. In both VLA and Effelsberg spectra, we detect no high velocity lines between +/- 350 km/s to +/- 850 km/s relative to systemic, arguing that masers only lie outside a radius of ~ 0.6 pc (1.9 light years) from the central engine (assuming a distance of 14.4 Mpc).Comment: 62 pages, 19 figure

    Design and Testing of a Bionic Dancing Prosthesis

    Get PDF
    Traditionally, prosthetic leg research has focused on improving mobility for activities of daily living. Artistic expression such as dance, however, is not a common research topic and consequently prosthetic technology for dance has been severely limited for the disabled. This work focuses on investigating the ankle joint kinetics and kinematics during a Latin-American dance to provide unique motor options for disabled individuals beyond those of daily living. The objective of this study was to develop a control system for a bionic ankle prosthesis that outperforms conventional prostheses when dancing the rumba. The biomechanics of the ankle joint of a non-amputee, professional dancer were acquired for the development of the bionic control system. Subsequently, a professional dancer who received a traumatic transtibial amputation in April 2013 tested the bionic dance prosthesis and a conventional, passive prosthesis for comparison. The ability to provide similar torque-angle behavior of the biological ankle was assessed to quantify the biological realism of the prostheses. The bionic dancing prosthesis overlapped with 37 ± 6% of the non-amputee ankle torque and ankle angle data, compared to 26 ± 2% for the conventional, passive prosthesis, a statistically greater overlap (p = 0.01). This study lays the foundation for quantifying unique, expressive activity modes currently unavailable to individuals with disabilities. Future work will focus on an expansion of the methods and types of dance investigated in this work.Massachusetts Institute of Technology. Media Laborator

    Institute of Archaeology & Horn Archaeological Museum Newsletter Volume 21.4

    Get PDF
    Tall Umayri 2000, Larry Herr, modified by Paul J. Ray, Jr. Jalul 2000, Randall W. Younker and David Merling Rendsburg at AU, Moise Isaac Beaulieu Studies Tablets, Paul J. Ray, Jr. Madaba Plains Project 4 Random Surveyhttps://digitalcommons.andrews.edu/iaham-news/1004/thumbnail.jp
    corecore