7,405 research outputs found

    Seals at sea: modelling seal distribution in the German bight based on aerial survey data

    Get PDF
    The Wadden Sea is an important habitat for harbour seals and grey seals. They regularly haul-out on sandbanks and islands along the coast. Comparably little is known about the time seals spend at sea and how they use the remainder of the North Sea. Yet, human activity in offshore waters is increasing and information on seal distribution in the North Sea is crucial for conservation and management. Aerial line transect surveys were conducted in the German bight from 2002 to 2007 to investigate the distribution and abundance of marine mammals. Distance sampling methodology was combined with density surface modelling for a spatially explicit analysis of seal distribution in the German North Sea. Depth and distance to coast were found to be relevant predictor variables for seal density. Density surface modelling allowed for a depiction of seal distribution in the study area as well as an abundance estimate. This is the first study to use aerial survey data to develop a density surface model (DSM) for a spatially explicit distribution estimate of seals at se

    Trailing Edge Noise Reduction by Passive and Active Flow Controls

    Get PDF
    This paper presents the results on the use of porous metal foams (passive control) and dielectric barrier surface plasma actuations (active control) for the reduction of vortex shedding tonal noises from the nonflat plate type trailing edge serration in a NACA0012 airfoil previously discussed in Chong et al. (AIAA J. Vol. 51, 2013, pp. 2665-2677). The use of porous metal foams to fill the interstices between adjacent members of the sawtooth can almost completely suppress the vortex shedding tonal noise, whilst the serration effect on the broadband noise reduction is retained. This concept will promote the nonflat plate type serrated trailing edge to become a genuine alternative to the conventional flat plate type serrated trailing edge, which is known to have drawbacks in the structural stability, aerodynamic performances and implementation issues. For the plasma actuators, configuration which produces electric wind in a tangential direction is found to be not very effective in suppressing the vortices emanated from the serration blunt root. On the other hand, for the plasma configuration which produces electric wind in a vertical direction, good level of vortex shedding tonal noise reduction has been demonstrated. However, the self noise produced by the plasma actuators negates the noise benefits on the tonal noise reduction. This characteristic illustrates the need to further develop the plasma actuators in a two pronged approach. First is to increase the electric wind speed, thereby allowing the plasma actuators to be used in a higher free jet velocity which naturally produces a larger level of jet noise. Second, the self noise radiated by the plasma actuators should be reduced

    Consequences of priming: Judgment and behavior.

    Get PDF

    Partnerships between health care agencies and faith communities

    Get PDF

    Hydroelastic vibration analysis of partially liquid-filled shells using a series representation of the liquid

    Get PDF
    A series representation of the oscillatory behavior of incompressible nonviscous liquids contained in partially filled elastic tanks is presented. Each term is selected on the basis of hydroelastic vibrations in circular cylindrical tanks. Using a complementary energy principle, the superposition of terms is made to approximately satisfy the liquid-tank interface compatibility. This analysis is applied to the gravity sloshing and hydroelastic vibrations of liquids in hemispherical tanks and in a typical elastic aerospace propellant tank. With only a few series terms retained, the results correlate very well with existing analytical results, NASTRAN-generated analytical results, and experimental test results. Hence, although each term is based on a cylindrical tank geometry, the superposition can be successfully applied to noncylindrical tanks

    Novel applications of the NASA/GSFC Viterbi decoder hardware simulator

    Get PDF
    The NASA/GSFC developed an all digital, real time, programmable Viterbi decoder simulator operating at rates up to 6 Msps. With this simulator, the bit error rate (BER) performance of convolutionally encoded/Viterbi decoded Shuttle-TDRSS return link channels under pulsed radio frequency interference (RFI) conditions has been predicted. The principles of the simulator are described with special emphasis on the channel simulator and the essential interaction between CLASS software and the simulator. The sensitivity of coded BER as function of several illustrative RFI parameters is discussed for two typical Shuttle-TDRSS return link configurations

    Octave Spanning Frequency Comb on a Chip

    Full text link
    Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks
    corecore