4,941 research outputs found
Lifestyle factors and ovarian cancer outcomes
Purpose: Few studies have reported on the lifestyle characteristics of ovarian cancer survivors. The objectives of this study were to characterize the associations between physical activity (PA) and body size (BS) with health-related quality of life (HRQOL) and ovarian cancer recurrence in a sample of regional and distal stage ovarian cancer survivors.
Methods: Epithelial ovarian cancer survivors in their first clinical remission, with no evidence of recurrent disease were identified from The University of Texas MD Anderson Cancer Center tumor registry. A total of 51 survivors consented to participate in a battery of self-reported questionnaires. Trained staff collected data on anthropometric and recurrence data were collected from the tumor registry. Generalized linear models were used to assess the relationship between PA, BS, and HRQOL. Cox proportional hazard models were used to assess the associations between PA, BS, and recurrence-free survival.
Results: Most (59%) women were overweight or obese (BMI \u3c 25 kg/m2) , 49% met current guidelines for PA (150 minutes of moderate to vigorous PA/week), and 29% displayed characteristics of abdominal obesity (\u3e88 centimeters). Women who were not obese reported significantly higher (better) overall HRQOL (point difference = 10.8, P \u3c 0.05) and mental health (point difference = 12.4, P \u3c 0.05) scores than women who were obese. Elevated waist circumference and physical activity were not significantly associated with HRQOL outcomes and we did not find any associations between lifestyle behaviors and recurrence free survival (all P \u3e 0.05).
Conclusions: Ovarian cancer survivors with characteristics of overall and abdominal obesity may be at risk for deficits in HRQOL and could benefit from interventions designed to reduce weight. More research is needed to determine whether meeting guidelines for physical activity is associated with improvements in health outcomes this population
On the effect of resonances in composite Higgs phenomenology
We consider a generic composite Higgs model based on the coset SO(5)/SO(4)
and study its phenomenology beyond the leading low-energy effective lagrangian
approximation. Our basic goal is to introduce in a controllable and simple way
the lowest-lying, possibly narrow, resonances that may exist is such models. We
do so by proposing a criterion that we call partial UV completion. We
characterize the simplest cases, corresponding respectively to a scalar in
either singlet or tensor representation of SO(4) and to vectors in the adjoint
of SO(4). We study the impact of these resonances on the signals associated to
high-energy vector boson scattering, pointing out for each resonance the
characteristic patterns of depletion and enhancement with respect to the
leading-order chiral lagrangian. En route we derive the O(p^4) general chiral
lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange
More three-point correlators of giant magnons with finite size
In the framework of the semiclassical approach, we compute the normalized
structure constants in three-point correlation functions, when two of the
vertex operators correspond to heavy string states, while the third vertex
corresponds to a light state. This is done for the case when the heavy string
states are finite-size giant magnons with one or two angular momenta, and for
two different choices of the light state, corresponding to dilaton operator and
primary scalar operator. The relevant operators in the dual gauge theory are
Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5
and N = 4 super Yang-Mills. Then we extend the obtained results to the
gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory,
arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure
TGF-beta(2)- and H2O2-Induced Biological Changes in Optic Nerve Head Astrocytes Are Reduced by the Antioxidant Alpha-Lipoic Acid
Background/Aims: The goal of the present study was to determine whether transforming growth factor-beta(2) (TGF-beta(2))- and oxidative stress-induced cellular changes in cultured human optic nerve head (ONH) astrocytes could be reduced by pretreatment with the antioxidant alpha-lipoic acid (LA). Methods: Cultured ONH astrocytes were treated with 1.0 ng/ml TGF-beta(2) for 24 h or 200 mu M hydrogen peroxide (H2O2) for 1 h. Lipid peroxidation was measured by a decrease in cis-pari-naric acid fluorescence. Additionally, cells were pretreated with different concentrations of LA before TGF-beta 2 or H2O2 exposure. Expressions of the heat shock protein (Hsp) alpha B-crystallin and Hsp27, the extracellular matrix (ECM) component fibronectin and the ECM-modulating protein connective tissue growth factor (CTGF) were examined with immunohistochemistry and real-time PCR analysis. Results: Both TGF-beta(2) and H2O2 increased lipid peroxidation. Treatment of astrocytes with TGF-beta(2) and H2O2 upregulated the expression of alpha B-crystallin, Hsp27, fibronectin and CTGF. Pretreatment with different concentrations of LA reduced the TGF-beta(2)- and H2O2-stimulated gene expressions. Conclusion: We showed that TGF-beta(2)- and H2O2-stimulated gene expressions could be prevented by pretreatment with the antioxidant LA in cultured human ONH astrocytes. Therefore, it is tempting to speculate that the use of antioxidants could have protective effects in glaucomatous optic neuropathy. Copyright (C) 2012 S. Karger AG, Base
Holographic 3-point function at one loop
We explore the recent weak/strong coupling match of three-point functions in
the AdS/CFT correspondence for two semi-classical operators and one light
chiral primary operator found by Escobedo et al. This match is between the
tree-level three-point function with the two semi-classical operators described
by coherent states while on the string side the three-point function is found
in the Frolov-Tseytlin limit. We compute the one-loop correction to the
three-point function on the gauge theory side and compare this to the
corresponding correction on the string theory side. We find that the
corrections do not match. Finally, we discuss the possibility of further
contributions on the gauge theory side that can alter our results.Comment: 24 pages, 2 figures. v2: Typos fixed, Ref. added, figure improved.
v3: Several typos and misprints fixed, Ref. updated, figures improved, new
section 2.3 added on correction from spin-flipped coherent state,
computations on string theory side improve
On holographic three point functions for GKP strings from integrability
Adapting the powerful integrability-based formalism invented previously for
the calculation of gluon scattering amplitudes at strong coupling, we develop a
method for computing the holographic three point functions for the large spin
limit of Gubser-Klebanov- Polyakov (GKP) strings. Although many of the ideas
from the gluon scattering problem can be transplanted with minor modifications,
the fact that the information of the external states is now encoded in the
singularities at the vertex insertion points necessitates several new
techniques. Notably, we develop a new generalized Riemann bilinear identity,
which allows one to express the area integral in terms of appropriate contour
integrals in the presence of such singularities. We also give some general
discussions on how semiclassical vertex operators for heavy string states
should be constructed systematically from the solutions of the Hamilton-Jacobi
equation.Comment: 62 pages;v2 Typos and equation (3.7) corrected. Clarifying remarks
added in Section 4.1. Published version;v3 Minor errors found in version 2
are corrected. For explanation of the revision, see Erratum published in
http://www.springerlink.com/content/m67055235407vx67/?MUD=M
Ecology of Sleeping: The Microbial and Arthropod Associates of Chimpanzee Beds
The indoor environment created by the construction of homes and other buildings is often considered to be uniquely different from other environments. It is composed of organisms that are less diverse than those of the outdoors and strongly sourced by, or dependent upon, human bodies. Yet, no one has ever compared the composition of species found in contemporary human homes to that of other structures built by mammals, including those of non-human primates. Here we consider the microbes and arthropods found in chimpanzee beds, relative to the surrounding environment (n = 41 and 15 beds, respectively). Based on the study of human homes, we hypothesized that the microbes found in chimpanzee beds would be less diverse than those on nearby branches and leaves and that their beds would be primarily composed of body-associated organisms. However, we found that differences between wet and dry seasons and elevation above sea level explained nearly all of the observed variation in microbial diversity and community structure. While we can identify the presence of a chimpanzee based on the assemblage of bacteria, the dominant signal is that of environmental microbes. We found just four ectoparasitic arthropod specimens, none of which appears to be specialized on chimpanzees or their structures. These results suggest that the life to which chimpanzees are exposed while in their beds is predominately the same as that of the surrounding environment
Holographic three-point functions for short operators
We consider holographic three-point functions for operators dual to short
string states at strong coupling in N=4 super Yang-Mills. We treat the states
as point-like as they come in from the boundary but as strings in the
interaction region in the bulk. The interaction position is determined by
saddle point, which is equivalent to conservation of the canonical momentum for
the interacting particles, and leads to conservation of their conformal
charges. We further show that for large dimensions the rms size of the
interaction region is small compared to the radius of curvature of the AdS
space, but still large compared to the string Compton wave-length. Hence, one
can approximate the string vertex operators as flat-space vertex operators with
a definite momentum, which depends on the conformal and R-charges of the
operator. We then argue that the string vertex operator dual to a primary
operator is chosen by satisfying a twisted version of Q^L=Q^R, up to spurious
terms. This leads to a unique choice for a scalar vertex operator with the
appropriate charges at the first massive level. We then comment on some
features of the corresponding three-point functions, including the application
of these results to Konishi operators.Comment: 24 pages; v2: References added, typos fixed, minor change
Correlation functions of three heavy operators - the AdS contribution
We consider operators in N=4 SYM theory which are dual, at strong coupling,
to classical strings rotating in S^5. Three point correlation functions of such
operators factorize into a universal contribution coming from the AdS part of
the string sigma model and a state-dependent S^5 contribution. Consequently a
similar factorization arises for the OPE coefficients. In this paper we
evaluate the AdS universal factor of the OPE coefficients which is explicitly
expressed just in terms of the anomalous dimensions of the three operators.Comment: 49 pages, 3 figures; v.2 references corrected; v3: corrected
discussion in section 5, results unchange
- …