29,843 research outputs found
Finite-Size Scaling of Vector and Axial Current Correlators
Using quenched chiral perturbation theory, we compute the long-distance
behaviour of two-point functions of flavour non-singlet axial and vector
currents in a finite volume, for small quark masses, and at a fixed gauge-field
topology. We also present the corresponding predictions for the unquenched
theory at fixed topology. These results can in principle be used to measure the
low-energy constants of the chiral Lagrangian, from lattice simulations in
volumes much smaller than one pion Compton wavelength. We show that quenching
has a dramatic effect on the vector correlator, which is argued to vanish to
all orders, while the axial correlator appears to be a robust observable only
moderately sensitive to quenching.Comment: version to appear in NP
Recommended from our members
Cno Abundances Of Hydrogen-Deficient Carbon And R Coronae Borealis Stars: A View Of The Nucleosynthesis In A White Dwarf Merger
We present high-resolution (R similar to 50,000) observations of near-IR transitions of CO and CN of the five known hydrogen-deficient carbon (HdC) stars and four R Coronae Borealis (RCB) stars. We perform an abundance analysis of these stars by using spectrum synthesis and state-of-the-art MARCS model atmospheres for cool hydrogen-deficient stars. Our analysis confirms reports by Clayton and colleagues that those HdC stars exhibiting CO lines in their spectrum and the cool RCB star SAps are strongly enriched in (18)O(with (16)O/(18)Oratios ranging from 0.3 to 16). Nitrogen and carbon are in the form of (14)N and (12)C, respectively. Elemental abundances for CNO are obtained from C I, Ci2, CN, and CO lines. Difficulties in deriving the carbon abundance are discussed. Abundances of Na from Na I lines and S from S I lines are obtained. Elemental and isotopic CNO abundances suggest that HdC and RCB stars may be related objects, and that they probably formed from a merger of an He white dwarf with a C-O white dwarf.Robert A. Welch Foundation of Houston, TexasSwedish Research CouncilGS-2006A-C-13GS-2007A-DD-1McDonald Observator
Symmetric and Asymmetric Coalescence of Drops on a Substrate
The coalescence of viscous drops on a substrate is studied experimentally and
theoretically. We consider cases where the drops can have different contact
angles, leading to a very asymmetric coalescence process. Side view experiments
reveal that the "bridge" connecting the drops evolves with self-similar
dynamics, providing a new perspective on the coalescence of sessile drops. We
show that the universal shape of the bridge is accurately described by
similarity solutions of the one-dimensional lubrication equation. Our theory
predicts a bridge that grows linearly in time and stresses the strong
dependence on the contact angles. Without any adjustable parameters, we find
quantitative agreement with all experimental observations.Comment: 5 pages, 4 figure
- …