36,929 research outputs found

    Analysis of the acoustic cut-off frequency and HIPs in six Kepler stars with stochastically excited pulsations

    Get PDF
    Gravito-acoustic modes in the Sun and other stars propagate in resonant cavities with a frequency below a given limit known as the cut-off frequency. At higher frequencies, waves are no longer trapped in the stellar interior and become traveller waves. In this article we study six pulsating solar-like stars at different evolutionary stages observed by the NASA Kepler mission. These high signal-to-noise targets show a peak structure that extends at very high frequencies and are good candidates for studying the transition region between the modes and the interference peaks or pseudo-modes. Following the same methodology successfully applied on Sun-as-a-star measurements, we uncover the existence of pseudo-modes in these stars with one or two dominant interference patterns depending on the evolutionary stage of the star. We also infer their cut-off frequency as the midpoint between the last eigenmode and the first peak of the interference patterns. By using ray theory we show that, while the period of one of the interference pattern is very close to half the large separation the other, one depends on the time phase of mixed waves, thus carrying additional information on the stellar structure and evolution.Comment: Accepted for publication in A&A. 14 pages, 28 figure

    Inverse magnetic catalysis from the properties of the QCD coupling in a magnetic field

    Get PDF
    We compute the vacuum one-loop quark-gluon vertex correction at zero temperature in the presence of a magnetic field. From the vertex function we extract the effective quark-gluon coupling and show that it grows with increasing magnetic field strength. The effect is due to a subtle competition between the color charge associated to gluons and the color charge associated to quarks, the former being larger than the latter. In contrast, at high temperature the effective thermo-magnetic coupling results exclusively from the contribution of the color charge associated to quarks. This produces a decrease of the coupling with increasing field strength. We interpret the results in terms of a geometrical effect whereby the magnetic field induces, on average, a closer distance between the (electrically charged) quarks and antiquarks. At high temperature, since the effective coupling is proportional only to the color charge associated to quarks, such proximity with increasing field strength makes the effective coupling decrease due to asymptotic freedom. In turn, this leads to a decreasing quark condensate. In contrast, at zero temperature both the effective strong coupling and the quark condensate increase with increasing magnetic field. This is due to the color charge associated to gluons dominating over that associated to quarks, with both having the opposite sign. Thus, the gluons induce a kind of screening of the quark color charge, in spite of the quark-antiquark proximity. The implications of these results for the inverse magnetic catalysis phenomenon are discussed.Comment: Expanded discussion, references added. Version to appear in Phys. Lett.
    • …
    corecore