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We compute the vacuum one-loop quark–gluon vertex correction at zero temperature in the presence of 
a magnetic field. From the vertex function we extract the effective quark–gluon coupling and show that it 
grows with increasing magnetic field strength. The effect is due to a subtle competition between the color 
charge associated to gluons and the color charge associated to quarks, the former being larger than the 
latter. In contrast, at high temperature the effective thermo-magnetic coupling results exclusively from 
the contribution of the color charge associated to quarks. This produces a decrease of the coupling with 
increasing field strength. We interpret the results in terms of a geometrical effect whereby the magnetic 
field induces, on average, a closer distance between the (electrically charged) quarks and antiquarks. 
At high temperature, since the effective coupling is proportional only to the color charge associated 
to quarks, such proximity with increasing field strength makes the effective coupling decrease due to 
asymptotic freedom. In turn, this leads to a decreasing quark condensate. In contrast, at zero temperature 
both the effective strong coupling and the quark condensate increase with increasing magnetic field. This 
is due to the color charge associated to gluons dominating over that associated to quarks, with both 
having the opposite sign. Thus, the gluons induce a kind of screening of the quark color charge, in 
spite of the quark–antiquark proximity. We discuss the implications for the inverse magnetic catalysis 
phenomenon.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The properties of strongly interacting matter in the presence of 
magnetic fields, as found in recent lattice QCD (LQCD) determina-
tions, exhibit intriguing characteristics. In a thermal environment, 
at and above the transition temperature for deconfinement/chiral 
symmetry restoration, the magnetic field hinders the formation of 
the quark condensate [1] and makes the critical temperature de-
crease with increasing field strength [2]. This behavior is dubbed 
inverse magnetic catalysis. In contrast, the vacuum (T = 0) con-
densate grows with the magnetic field strength. As the temper-
ature increases near, but below the transition temperature, the 
condensate begins to grow for weak fields reaching a maximum 
value, smaller than for T = 0 and the same field strength. Subse-
quently, the condensate decreases with increasing field strength. 
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This growth of the quark condensate with magnetic field strength 
corresponds to magnetic catalysis. Overall, this behavior indicates 
that the strength of the QCD interaction at T = 0 is enhanced 
by the magnetic field, thus strengthening the binding of quark–
antiquark pairs that make up the condensate. However, as the 
temperature increases, such binding becomes weaker. When the 
temperature reaches the transition region the magnetic field dom-
inates the interaction, quenching monotonically the binding for all 
field strengths. The search for an explanation of such properties 
has attracted the attention of a great deal of research over the last 
years [3,4]. A possible way to look at this effect has been casted in 
terms of the competition between the valence and the sea con-
tributions to the quark condensate. It has been argued that at 
T = 0 both contributions are growing as a function of eB . However, 
around the critical temperature Tc the valence contribution is still 
increasing whereas the sea contribution decreases, as a function of 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Feynman diagrams contributing to the magnetic dependence of the quark–gluon vertex. Diagram (a) corresponds to a QED-like contribution whereas diagram (b) 
corresponds to a pure QCD contribution.
eB . This seemingly results in a decrease of Tc as a function of eB . 
For recent reviews see [5,6].

On general grounds a magnetic field interacting with electri-
cally charged particles acts as an ordering agent. In other words, 
the motion of virtual or real charges takes place around the mag-
netic field lines. This ordered motion has an important geometrical 
consequence: charged particles are closer to each other on average. 
When the intensity of the magnetic field increases, so does the 
proximity between charges. As is well known, due to asymptotic 
freedom, the closer strongly interacting particles are, the weaker 
the interaction. However strongly interacting matter, either at zero 
or at finite temperature, is not only made out of quarks and an-
tiquarks but also of electrically neutral gluons. If the geometrical 
effect produced by the magnetic field were related to inverse mag-
netic catalysis, then at low temperatures the color interactions pro-
duced by gluons should dominate, while quarks would take over at 
high temperatures.

An important clue on the properties of strongly interacting mat-
ter in the presence of a magnetic field has been provided in [7]
for the case of high temperature. There it was shown that under 
such conditions the quark–gluon effective coupling decreases with 
the field intensity and that the color charge contribution from the 
gluons cancels exactly. Furthermore, the magnetic field-dependent 
vertex correction satisfies a Ward-like identity involving the mag-
netic field dependent quark self-energy. This means that at high 
temperature color dynamics is dominated by quarks. This behav-
ior can be understood in terms of the geometrical picture whereby 
the proximity between electric charges induced by the magnetic 
field dominates the color interaction. An outstanding question is 
whether this picture holds also at T = 0, namely, whether under 
such circumstances the strength of the color interaction becomes, 
instead, gluon dominated.

In this paper we compute the magnetic field contribution to the 
quark–gluon vertex in vacuum and show that, indeed, the strong 
interaction becomes dominated by the contribution of the elec-
trically neutral gluons. This generates an effective coupling that 
grows with increasing field strength, in contrast with the high-
temperature result. Recall that inverse magnetic catalysis can also 
be quantified in terms of the properties of the quark conden-
sate as a function of the magnetic field. Since the condensate 
is a measure of the strength of the bound between either vac-
uum (T = 0) or thermal (T �= 0) quark–antiquark pairs and αs

is a measure of the strength of the interaction between these 
quark–antiquark pairs, both quantities represent the strength of 
the quark–antiquark binding. We show that a mechanism that can 
help understand inverse magnetic catalysis consists on pursuing 
the relation between the properties of αs as a function of the 
magnetic field and the condensate. In this context we recall that 
several calculations that address the behavior of the quark con-
densate in the presence of a magnetic field, coincide in that the 
condensate is an increasing function of the field strength [8]. Both, 
the coupling constant and the condensate, should behave similarly 
as a function of the field strength. We find that in the two ex-
treme cases, namely, at high and zero T , they do. Here we do not 
address the details of how this change happens, which certainly re-
quire non-perturbative information for their description. However, 
by establishing that this change in the properties of αs happens 
at these two extremes, we put forward a novel scenario to study 
inverse magnetic catalysis in terms of the thermomagnetic proper-
ties of the strong coupling constant.

We begin by considering the case of a magnetic field point-
ing along the ẑ direction. In a magnetic background, the fermion 
propagator in coordinate space can no longer be written as a sim-
ple Fourier transform of a momentum propagator but instead it is 
written as [9]

S(x, x′) = �(x, x′)
∫

d4 p

(2π)4
e−ip·(x−x′) S(p), (1)

where �(x, x′) is called the Schwinger phase factor. The translational 
invariant part of the propagator, S(p), is given by

i S(p) =
∞∫

0

ds

cos(qBs)
eis(p2‖−p2⊥

tan(qBs)
qBs −m2)

×
{

[cos(qBs) + γ1γ2 sin(qBs)] (m + /p‖)

− /p⊥
cos(qBs)

}
, (2)

where m and q are the quark mass and absolute value of the quark 
charge, in units of the electron charge, respectively. Hereafter we 
use the following definitions for the parallel and perpendicular 
components of the scalar product of any two vectors aμ and bμ

(a · b)‖ = a0b0 − a3b3

(a · b)⊥ = a1b1 + a2b2. (3)

Fig. 1 shows the Feynman diagrams contributing to the quark–
gluon vertex. Diagram (a) corresponds to a QED-like contribution 
whereas diagram (b) corresponds to the pure QCD contribution. 
The computation of these diagrams requires the fermion propaga-
tor given by Eq. (1), which involves the Schwinger phase factor 
�(x, x′). It can be shown [7] that when only one or two fermion 
propagators are involved in this kind of triangle loop, the phase 
factor can be gauged away and we can just work with the transla-
tionally invariant part of the fermion propagators.

Since the effect we are after shows up already for small mag-
netic field strengths, we consider the case of a weak field for which 
the fermion propagator can be written as [10]
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i S(p) = i
/p

p2
− (qB)γ1γ2

/p‖
p4

, (4)

where we consider the chiral limit, namely m = 0. The chiral limit 
of the weak field expansion of the fermion propagator is a well 
defined object. In fact, this expansion can be viewed as a power 
series in eB of the full propagator, independently of any relation 
between the field and the fermion mass. In the present context 
a field is weak if compared with the gluon momentum squared, 
which must be large in a perturbation calculation.

Working in the Feynman gauge, the contributions to the mag-
netic field dependent part of the quark–gluon vertex from dia-
grams (a) and (b) of Fig. 1, in the weak field limit are

δ�
μα
(a) = ig3(qB)

(
C F − C A

2

)
tα

∫
d4k

(2π)4

1

k2

×
{
γ ν (/p2 − /k)

(p2 − k)2
γ μ γ1γ2(/p1 − /k)‖

(p1 − k)4
γν

+ γ ν γ1γ2(/p2 − /k)‖
(p2 − k)4

γ μ (/p1 − /k)

(p1 − k)2
γν

}
, (5)

δ�
μα
(b)

= −2ig3(qB)
C A

2
tα

∫
d4k

(2π)4

1

k4

[
gμν(2p2 − p1 − k)ρ

+ gνρ(2k − p2 − p1)
μ + gρμ(2p1 − k − p2)

ν
]

× γρ
γ1γ2/k‖

(p2 − k)2(p1 − k)2
γν, (6)

where C F , C A are the color factors corresponding to the funda-
mental and adjoint representations of the SU(N) Casimir operators, 
C F = (N2 − 1)/2N , and C A = N and tα is a Gell–Mann matrix. The 
explicit factor of 2 in Eq. (6) takes care of the two possible charge 
fluxes in diagram (b) of Fig. 1.

We consider �μα
(a) and �μα

(b)
as functions of the relative and av-

erage quark-pair four-momenta, Q = p1 − p2 and P = (p1 + p2)/2, 
respectively. According to the kinematics depicted in Fig. 1, Q cor-
responds to the four-momentum carried by the gluon. For sim-
plicity we consider the symmetric three-momentum configura-
tion where p1 = (E, �p), −p2 = (E, −�p), thus Q = (2E, �0) and 
P = (0, �p). In this case, Q 2 is proportional to the energy and P 2

to the momentum squared carried by the gluon. To make a closer 
connection to the case discussed in Ref. [7], we work in the static
limit, namely P → 0. Furthermore, in order to make sure that the 
perturbative calculation makes sense, we take Q 2 large. In this 
sense, the expansion parameter for the validity of the calculation 
becomes qB/Q 2. In this limit, after a lengthy but straightforward 
exercise, Eqs. (5)–(6) become

δ�
μα
(a) = −ig3

(
C F − C A

2

)
tα

[1 + ln(4)]

3π2

× q �
 · �B
Q 2

(
/uuμ + /bbμ

)
, (7)

δ�
μα
(b)

= −ig3C Atα
[−1 + ln(4)]

15π2

× q �
 · �B
Q 2

(
/uuμ + /bbμ

)
, (8)

where �
 · �B = 
3 B = iγ1γ2 B is the dot product between the 
spin operator and the magnetic field vector and we have defined 
uμ = (1, 0, 0, 0) and bμ = (0, 0, 0, 1). Notice that the first order 
magnetic field-dependent correction is proportional to the cou-
pling between the quark spin and the magnetic field, affecting 
only the longitudinal components (μ = 0, 3). The same longitu-
dinal matrix structure has been found for the vertex correction in 
the presence of a magnetic field in the context of an effective QCD 
model [11] and in QED [12].

From the longitudinal components of the full vertex (to this or-
der), namely

�α‖ = iγ μ
‖ tα + δ�

μα
(a) + δ�

μα
(b)

, (9)

one can extract the effective vacuum quark–gluon coupling in the 
presence of a magnetic field

gvac
eff = g −

[
g3 1

3π2

q �
 · �B
Q 2

]

×
{(

C F − C A

2

)
[1 + ln(4)] + C A

5
[−1 + ln(4)]

}

= g −
[

g3 1

3π2

q �
 · �B
Q 2

]

×
{

[1 + ln(4)] C F − [7 + 3 ln(4)]

10
C A

}
. (10)

For N = 3, the contribution from the color charge associated to 
gluons (C A) dominates over the contribution from the color charge 
associated to quarks (C F ). The net effect is that in vacuum, the 
effective coupling between quarks and gluons grows with the mag-
netic field strength. In contrast, we recall that the effective thermo-
magnetic coupling computed at high temperature becomes [7]

gtherm
eff = g

[
1 − m2

f

T 2
+

(
8

3T 2

)
g2C F M2(T ,m f ,qB)

]
, (11)

where m f is the quark thermal mass and the function M2(T , m, qB)

is given by

M2(T ,m,qB) = q �
 · �B
16π2

[
ln(2) − π

2

T

m

]
, (12)

which for high temperature is negative definite. Notice that con-
trary to the T = 0 case, the magnetic field-dependent correction at 
high temperature is proportional only to the contribution from the 
color charge associated to quarks, i.e. C F . This is because the con-
tribution from the color charge associated to gluons, C A , cancels 
identically.

Equations (10) and (11) show that in the presence of a mag-
netic field, at T = 0, the contribution from the color charges asso-
ciated to gluons dominates marginally over the contribution from 
the color charge associated to quarks. Since the former has the op-
posite sign of the latter, the overall effective coupling grows with 
the magnetic field strength. At high temperature however, the con-
tribution from the color charge associated to gluons cancels and 
the color dynamics is quark-dominated. Since the surviving mag-
netic field-dependent contribution has an overall negative sign, 
the effective coupling decreases with the magnetic field strength. 
We point out that calculations carried out in the opposite limit, 
namely the very strong field case, find that the coupling constant 
at T = 0 decreases as a function of the field strength [13]. Alto-
gether this means that the behavior found in this work should be 
valid up to a certain (albeit large) value of the magnetic field.

Notice that the perturbative calculation at T = 0 requires that 
Q 2 is large and that the weak field approximation is valid provided 
qB 
 Q 2. At finite temperature, the large temperature assump-
tion provides the large energy scale for the perturbative calculation 
(Hard Thermal Loop approximation) as well as for the weak field 
approximation to be valid.

Also, notice that the kinematical conditions we have imple-
mented include studying the configuration where the quark and 
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antiquark travel back to back. This means that their relative or-
bital angular momentum L vanishes. Since the gluon spin is S = 1, 
the quarks must carry a total spin S = 1 with a preferred projec-
tion aligned with the magnetic field direction. Had we considered 
a different kinematical configuration whereby the quark–antiquark 
pair emerged with another relative angle different from 180 de-
grees, conservation of angular momentum and parity implies that 
the relative angular momentum L has to be either 0 or 2. In both 
cases, the total quark–antiquark spin needs to be S = 1.

Also, we point out that our calculation provides not only the 
behavior of the effective coupling constant but also of the effective 
quark–gluon vertex as a function of the magnetic field (in the weak 
field limit). This vertex can in turn be used to compute a given pro-
cess that may be influenced by the presence of the magnetic field. 
Consider for instance q̄q → q̄q. Using the effective vertex found in 
this work, the amplitude for this process can be constructed at-
taching the gluon line to the incoming q̄q whereas the outgoing q̄q
is already provided by the vertex. The process can be described in 
any given Lorentz frame. We thus see that choosing the symmet-
ric configuration is tantamount to working in the center of mass 
of the colliding pair. Since the matrix element is Lorentz invari-
ant, the choice of frame is a matter of convenience. The use of the 
static limit is an approximation that is valid provided there is a 
large scale (larger than the quark momenta or the masses) present 
in the calculation. This large scale is the gluon virtuality Q 2. When 
this quantity is large so it is the energy of the collision in the 
above-described process. This means that the calculation lends it-
self to be applied to describing hard q̄q annihilation (or scattering). 
This kind of processes are relevant in collisions of hadronic sys-
tems, namely A+p or p+p and even A+A with a large momentum 
transfer involved, where the energy is larger than the temperature, 
if any. In summary, the choice of configuration and of kinematics 
is general enough under these circumstances.

Finally, notice that the study is performed by looking at two ex-
treme scenarios where perturbation theory at leading order is un-
der control, therefore avoiding the ambiguities of non-perturbative 
elements where modeling is oftentimes involved (see for example 
Ref. [14]). In these limits a first order calculation in the magnetic 
field intensity suffices for two reasons: First, since there is a large 
energy scale provided either by the temperature (squared) or by 
the quark’s momentum (squared), the field can be taken as small 
with respect to either of these energy scales. Second, the LQCD 
calculation for the condensate in the (high) zero temperature limit 
is a monotonically (decreasing) increasing function of the field 
strength. In order to study if αs behaves similarly with the mag-
netic field strength, what matters is knowledge of the sign of the 
first derivative of αs at qB = 0. This can be computed merely from 
the linear term in qB which is the term computed in this work. 
In summary, although interesting effects take place in the oppo-
site limit, namely the strong field case (see for example Ref. [15]), 
for the purpose of this work, as argued, it suffices to work in the 
weak field limit. In the same context, applying a standard renor-
malization group analysis to explore the change of the coupling 
with scale will not affect the sign of its rate of change with the 
magnetic field.

Our results show that the geometrical effect produced by the 
magnetic field at high temperature, whereby quarks and anti-
quarks get closer on average, is accompanied by the decrease of 
their effective interaction due to asymptotic freedom. This takes 
place because in that scenario the strong interactions are due en-
tirely to the color charge associated to quarks. The strength of the 
interaction thus decreases with increasing magnetic field strength. 
In contrast, at T = 0 such geometrical effect does not take place. 
This is because the color charge associated to gluons produces a 
kind of screening of the color charge associated to quarks. In turn, 
and in spite of the quark–anti-quark proximity, this leads to an 
increase in the effective strong coupling with increasing magnetic 
field strength. Such larger coupling results in a tighter quark–anti-
quark bond, leading to a larger quark condensate as obtained in 
LQCD at T = 0. In contrast, a smaller coupling translates into a 
looser quark–anti-quark bond and thus into a decreasing conden-
sate at large T , as also found by LQCD. Similar considerations 
phrased in terms of the competition between valence and sea-
quark contributions around Tc have been argued in Ref. [5].

The details of how this change in behavior of the coupling 
constant take place in the intermediate (non-perturbative domain) 
with increasing field strength as well as its relation to the behav-
ior of the critical temperature above and below Tc are still open 
problems. Work along these directions is in progress and will be 
reported elsewhere.
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