6,550 research outputs found

    Fast determination of toxic diethylene glycol in toothpaste by ultra-performance liquid chromatography–time of flight mass spectrometry

    Get PDF
    A rapid method for determining diethylene glycol (DEG) in toothpaste based on the use of ultraperformance liquid chromatography (UPLC) coupled to time-of-flight mass spectrometry (TOF-MS) has been developed. The method has been validated in toothpaste samples spiked at different levels, 0.005, 0.1 and 5%, obtaining satisfactory recoveries (74–98%) and relative standard deviations (<4%). Quantification was carried out by using matrix-matched standards calibration. The developed method was applied to several types of toothpaste, making identification and quantification of DEG and other polyethylene glycols (PEG) feasible with very little sample manipulation, as only extraction with water is required. The excellent sensitivity of TOF-MS analysis performed in fullscan acquisition mode allowed the determination of DEG at concentration levels as low as 0.005% in samples and its reliable identification via the mass accuracy measurements provided by this instrument (<5 ppm

    Determination of patulin in apple and derived products by UHPLC-MS/MS. Study of matrix effects with atmospheric pressure ionisation sources.

    Get PDF
    Sensitive and reliable analytical methodology has been developed for the measurement of patulin in regulated foodstuffs by using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC–MS/MS) with triple quadrupole analyser. Solid samples were extracted with ethyl acetate, while liquid samples were directly injected into the chromatographic system after dilution and filtration without any clean-up step. Chromatographic separation was achieved in less than 4 min. Electrospray (ESI) and atmospheric pressure chemical ionisation (APCI) sources were evaluated, in order to assess matrix effects. The use of ESI source caused strong signal suppression in samples; however, matrix effect was negligible using APCI, allowing quantification with calibration standards prepared in solvent. The method was validated in four different apple matrices (juice, fruit, puree and compote) at two concentrations at the low ÎŒg kg−1 level. Average recoveries (n = 5) ranged from 71% to 108%, with RSDs lower than 14

    Use of quadrupole time-of-flight mass spectrometry for proposal of transformation products of the herbicide bromacil after water chlorination

    Get PDF
    The herbicide bromacil has been extensively used in the Spanish Mediterranean region, and although plant protection products containing bromacil have been withdrawn by the European Union, this compound is still frequently detected in surface and ground water of this area. However, the fast and complete disappearance of this compound has been observed in water intended for human consumption, after it has been subjected to chlorination. There is a concern about the possible degradation products formed, since they might be present in drinking water and might be hazardous. In this work, the sensitive full-spectrum acquisition, high resolution and exact mass capabilities of hybrid quadrupole time-of-flight (QTOF) mass spectrometry have allowed the discovery and proposal of structures of transformation products (TPs) of bromacil in water subjected to chlorination. Different ground water samples spiked at 0.5 ”g/mL were subjected to the conventional chlorination procedure applied to drinking waters, sampling 2-mL aliquots at different time intervals (1, 10 and 30 min). The corresponding non-spiked water was used as control sample in each experiment. Afterwards, 50 ÎŒL of the water was directly injected into an ultra-high-pressure liquid chromatography (UHPLC)/electrospray ionization (ESI)-(Q)TOF system. The QTOF instrument enabled the simultaneous recording of two acquisition functions at different collision energies (MSE approach): the low-energy (LE) function, fixed at 4 eV, and the high-energy (HE) function, with a collision energy ramp from 15 to 40 eV. This approach enables the simultaneous acquisition of both parent (deprotonated and protonated molecules) and fragment ions in a single injection. The low mass errors observed for the deprotonated and protonated molecules (detected in LE function) allowed the assignment of a highly probable molecular formula. Fragment ions and neutral losses were investigated in both LE and HE spectra to elucidate the structures of the TPs found. For those compounds that displayed poor fragmentation, product ion scan (MS/MS) experiments were also performed. On processing the data with specialized software (MetaboLynx), four bromacil TPs were detected and their structures were elucidated. To our knowledge, two of them had not previously been reported

    Importance of MS selectivity and chromatographic separation in LC-MS/MS-based methods when investigating pharmaceutical metabolites in water. Dipyrone as a case of study.

    Get PDF
    Pharmaceuticals are emerging contaminants of increasing concern because of their presence in the aquatic environment and potential to reach drinking-water sources. After human and/or veterinary consumption, pharmaceuticals can be excreted in unchanged form, as the parent compound, and/or as free or conjugated metabolites. Determination of most pharmaceuticals and metabolites in the environment is commonly made by liquid chromatography (LC) coupled to mass spectrometry (MS). LC coupled to tandem MS is the technique of choice nowadays in this field. The acquisition of two selected reaction monitoring (SRM) transitions together with the retention time is the most widely accepted criterion for a safe quantification and confirmation assay. However, scarce attention is normally paid to the selectivity of the selected transitions as well as to the chromatographic separation. In this work, the importance of full spectrum acquisition high-resolution MS data using a hybrid quadrupole time-of-flight analyser and/or a suitable chromatographic separation (to reduce the possibility of co-eluting interferences) is highlighted when investigating pharmaceutical metabolites that share common fragment ions. For this purpose, the analytical challenge associated to the determination of metabolites of the widely used analgesic dipyrone (also known as metamizol) in urban wastewater is discussed. Examples are given on the possibilities of reporting false positives of dypirone metabolites by LC-MS/MS under SRM mode due to a wrong assignment of identity of the compounds detected

    The key role of mass spectrometry in comprehensive research on new psychoactive substances

    Get PDF
    New psychoactive substances (NPS) are a wide group of compounds that try to mimic the effects produced by the ‘classical’ illicit drugs, including cannabis (synthetic cannabinoids), cocaine and amphetamines (synthetic cathinones) or heroin (synthetic opioids), and which health effects are still unknown for most of them. Nowadays, more than 700 compounds are being monitored by official organisms, some of which have been recently identified in seizures and/or intoxication cases. Toxicological analysis plays a pivotal role in NPS research. A comprehensive investigation on NPS, from the first identification of a novel substance until its detection in drug users to help in diagnostics and medical treatment, requires the use of a wide variety of instruments and analytical strategies. This paper illustrates the key role of mass spectrometry (MS) along a comprehensive investigation on NPS. The synthetic cannabinoid XLR‐11 and the synthetic cathinone 5‐PPDi have been chosen as representative substances of the most consumed NPS families. Moreover, both compounds have been investigated at our laboratory in different stages of the three‐step strategy considered in this article. The initial identification and characterisation of the compound in consumption products, the first reported metabolic pathway and the development of analytical methodologies for its determination (and/or their metabolites) in different toxicological samples are described. The analytical strategies and MS instruments are briefly discussed to show the reader the possibilities that MS instrumentation offer to analytical scientists. This publication aims to be a starting point for those interested on the NPS research field from an analytical chemistry point of view

    Target and non-target screening strategies for organic contaminants, residues and illicit substances in food , environmental and human biological samples by UHPLC-QTOF-MS

    Get PDF
    In this paper, we illustrate the potential of ultra-high performance liquid chromatography (UHPLC) coupled with hybrid quadrupole time-of-flight mass spectrometry (QTOF MS) for large scale screening of organic contaminants in different types of samples. Thanks to the full-spectrum acquisition at satisfactory sensitivity, it is feasible to apply both (post)-target and non-target approaches for the rapid qualitative screening of organic pollutants in food, biological and environmental samples. Different strategies have been applied and compared in this work. The first approach consists of target screening based on automatically extracting the exact analyte masses with a narrow mass window (`10 mDa). The selection of analytes can be made after MS acquisition as non-specific analyte information is required when injecting the samples. The second, non-targeted approach, consists of a first component detection step followed by the search of the detected components in home-made spectral libraries. In this work, two types of libraries have been evaluated: a theoretical database, including the molecular formula of a large number of pollutants ($1000), and an empirical mass spectra library which includes a lower number of compounds for which reference standards were available. In all cases the confidence of the identification process was excellent, thanks to the value of information given in QTOF MSE acquisition mode (i.e. simultaneous acquisition of low and high energy TOF MS spectra in a unique run). Both, target and non-target approaches, are complementary and both have advantages and drawbacks. Their application to different types of samples has allowed the detection of diverse organic compounds, for example the mycotoxin fumonisin B1 in food samples, cocaine and several metabolites in human urine, as well as several pesticides, antibiotics and drugs of abuse in urban wastewate

    Investigation of cannabis biomarkers and transformation products in waters by liquid chromatography coupled to time of flight and triple quadrupole mass spectrometry

    Get PDF
    11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) is commonly selected as biomarker for the investigation of cannabis consumption through wastewater analysis. The removal efficiency of THC-COOH in wastewater treatment plants (WWTPs) has been reported to vary between 31% and 98%. Accordingly, possible transformation products (TPs) of this metabolite might be formed during treatment processes or in receiving surface water under environmental conditions. In this work, surface water was spiked with THC-COOH and subjected to hydrolysis, chlorination and photo-degradation (both ultraviolet and simulated sunlight) experiments under laboratory-controlled conditions. One hydrolysis, eight chlorination, three ultraviolet photo-degradation and seven sunlight photo-degradation TPs were tentatively identified by liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (LC-QTOF MS). In a subsequent step, THC-COOH and the identified TPs were searched in wastewater samples using LC coupled to tandem mass spectrometry (LC–MS/MS) with triple quadrupole. THC-COOH was found in all influent and effluent wastewater samples analyzed, although at significant lower concentrations in the effluent samples. The removal efficiency of WWTP under study was approximately 86%. Furthermore, THC-COOH was also investigated in several surface waters, and it was detected in 50% of the samples analyzed. Regarding TPs, none were found in influent wastewater, while one hydrolysis and five photo-degradation (simulated sunlight) TPs were detected in effluent and surface waters. The most detected compound, resulting from sunlight photo-degradation, was found in 60% of surface waters analyzed. This fact illustrates the importance of investigating these TPs in the aquatic environment

    Investigation of pharmaceutical metabolites in environmental waters by LC-MS/MS

    Get PDF
    Pharmaceuticals, once ingested, are commonly metabolized in the body into more polar and soluble forms. These compounds might not be completely removed in the wastewater treatment plants and consequently being discharged into the aquatic ecosystem. In this work, a multi-class sensitive method for the analysis of 21 compounds, including 7 widely consumed pharmaceuticals and 14 relevant metabolites, has been developed based on the use of UHPLC-MS/MS in selected reaction monitoring (SRM) mode. The method was validated in six surface waters (SW) and six effluent wastewaters (EWW) at realistic concentration levels that can be found in waters. The optimized method was applied to the analysis of different types of water samples (rivers, lakes and effluent wastewater), detecting nearly all the parent compounds and metabolites investigated in this work. This fact illustrates that not only pharmaceuticals but also their metabolites are commonly present in these types of waters. Analytical research and monitoring programs should be directed not only towards parent pharmaceuticals but also towards relevant metabolites to have a realistic overview of the impact of pharmaceuticals in the aquatic environment

    Direct and Fast Screening of New Psychoactive Substances Using Medical Swabs and Atmospheric Solids Analysis Probe Triple Quadrupole with Data-Dependent Acquisition

    Get PDF
    New psychoactive substances (NPS) have become a serious public health problem, as they are continuously changing their structures and modifying their potency and effects on humans, and therefore, novel compounds are unceasingly appearing. One of the major challenges in forensic analysis, particularly related to the problem of NPS, is the development of fast screening methodologies that allow the detection of a wide variety of compounds in a single analysis. In this study, a novel application of the atmospheric solids analysis probe (ASAP) using medical swabs has been developed. The swab–ASAP was coupled to a triple quadrupole mass analyzer working under a data-dependent acquisition mode in order to perform a suspect screening of NPS in different types of samples as well as on surfaces. The compounds were automatically identified based on the observed fragmentation spectra using an in-house built MS/MS spectra library. The developed methodology was applied for the identification of psychoactive substances in research chemicals and herbal blends. The sensitivity of the method, as well as its applicability for surface analysis, was also assessed by identifying down to 1 ÎŒg of compound impregnated onto a laboratory table. Another remarkable application was the identification of cathinones and synthetic cannabinoids on the fingers of potential consumers. Interestingly, our data showed that NPS could be identified on the fingers after being in contact with the product and even after cleaning their hands by shaking off with a cloth. The methodology proposed in this paper can be applied for routine analyses of NPS in different matrix samples without the need to establish a list of target compounds prior to analysis
    • 

    corecore