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ABSTRACT 

The herbicide bromacil has been extensively used in the Spanish Mediterranean region. 

Although plant protection products containing bromacil have been withdrawn by the European 

Union, this compound is still frequently detected in surface and ground water of this area. 

However, the fast and complete disappearance of this compound has been observed in water 

intended for human consumption, after being subjected to chlorination. There is a concern 

about the possible degradation products formed, since they might be present in drinking water 

and might be potentially hazardous. In this work, the sensitive full-spectrum acquisition, high 

resolution and exact mass capabilities of hybrid quadrupole time-of-flight (QTOF) mass 

spectrometry have allowed the discovering and proposal of transformation products (TPs) of 

bromacil in water subjected to chlorination. Different ground water samples spiked at 0.5 

µg/mL were subjected to the conventional chlorination applied for drinking waters, sampling 2-

mL aliquots at different time intervals (1, 10 and 30 minutes). The corresponding non-spiked 

water was used as control sample in each experiment. Afterwards, 50 µL was directly injected 

in an ultra high pressure liquid chromatography (UHPLC)-electrospray (ESI)-(Q)TOF system. 

The QTOF instrument enabled the simultaneous recording of two acquisition functions at 

different collision energies (MSE approach): the low energy (LE) function, fixed at 4 eV, and 

the high energy (HE) function, with a collision energy ramp from 15 to 40 eV. This approach 

enables the simultaneous acquisition of both parent (de)protonated molecules and fragment 

ions in a single injection. The low mass errors observed for parent compounds (detected in LE 

function) allowed the assignment of a highly probable molecular formula. Fragment ions as 

well as neutral losses were investigated in both LE and HE spectra to elucidate the structure of 

the TPs found. For those compounds showing poor fragmentation, product ion scan (MS/MS) 

experiments were also performed. After processing data with specialised software 
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(MetaboLynx), four bromacil TPs were detected and elucidated. Up to our knowledge, two of 

them had not been reported in the literature. 

 

Keywords: herbicide bromacil, quadrupole time of flight mass spectrometry, transformation/ 

degradation products, water chlorination, elucidation.  
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INTRODUCTION 

Nowadays, there is a growing concern about the presence of herbicides and their 

transformation products in the environment. In the Spanish Mediterranean region, an important 

agricultural area with predominance of citric crops, the herbicide bromacil has been extensively 

used for many years. Although plant protection products containing bromacil have been 

withdrawn by the European Union [1], it is still detected in environmental water [2]. The 

occurrence of bromacil in the aquatic environment has been confirmed in our recent analysis of 

ground and surface water of the Valencian region. In several occasions, bromacil 

concentrations were ≥ 0.1µg/L, the maximum allowed for drinking water. 

Several treatment processes have been investigated for reducing pesticide 

concentrations in water and to minimize the potential health risks associated with the exposure 

to these chemicals by the consumption of contaminated waters. The most widely treatment 

applied to water intended for human consumption is chlorination. Preliminary experiments 

made at our laboratory showed the fast and complete disappearance of this compound after 

water chorination; therefore, there is an interest to know the possible degradation products 

formed, since they might be present in drinking water collected from ground or surface water 

contaminated by this herbicide, and the products might be potentially toxic.  

 Some works have reported the degradation of bromacil, after ozonation and 

photodegradation. One of the first works was reported by Acher et al [3], who identified the 

degradation by-products of bromacil by ozonation. The products were isolated and their 

structures elucidated by mass spectrometry, various 13C and lH NMR spectroscopy, as well as 

chemical methods. Three main products were identified: two debrominated products, 3-sec-

butyl-5-acetyl-5-hydroxyhydantoin and 3-sec-butylparabanic acid, and a dibromohydrin, 3-sec-

butyl-5,5-dibromo-6-methyl-6-hydroxyuracil. A fourth product was not identified. Due to the 

formation of a HOBr adduct of bromacil, the biodegradability and phytotoxicity were not 
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improved after ozonation. Hapeman et al. [4] suggested that the conversion of bromacil by 

ozonation was mainly due to direct ozone attack mechanism and not to a hydroxyl radical 

mechanism. A kinetic model to predict the conversion of bromacil and the formation of the 

three by-products, during ozonation and O3/H2O2 process, was developed by Torrents et al 

[5].More recently, a series of studies have reviewed by Ikehata et Gamal El-Din [6] on the 

degradation of bromacil by ozonation. 

 Photodecomposition of bromacil has also been investigated in aqueous solutions (using 

a mercury vapor-lamp with its main output at 254 nm) [7] although the products were not 

identified. Experiments simulating natural conditions by exposure of aqueous solutions to 

direct solar irradiation (summer) for 4 months yielded only 2.2% of a single dealkylated 

photoproduct, indicating that bromacil is very stable toward sunlight [8]. Acher et al [3] 

performed a comparative study of several oxidation methods of aqueous bromacil solutions. 

Ozonation [3], UV photolysis at 254 nm and sensitized sunlight photodegradation were 

examined. The main products found in UV photolysis were 3-sec-butyl-6-methyluracil and a 

dimer compound. By sensitized sunlight photodegradation, 3-sec-butyl-5-acetyl-5-

hydroxyhydantoin and the dimer compound were identified. Recently, our group [9] 

investigated the degradation of bromacil in aqueous media after being irradiated with a UV-

mercury lamp (254 nm). Two TPs were identified: 1-sec-butylurea and N-sec-

(butyl(carboxy)carbamoyl)formamide. 

In degradation experiments, the use of powerful identification tools such as quadrupole 

time-of-flight (QTOF) mass spectrometry is of great interest. The inherent high sensitivity of 

the TOF analyser in full acquisition facilitates the investigation of degradation/transformation 

processes of organic pollutants at relevant environmental levels (at ppb levels). Additionally, its 

elevated resolution (>10000 at full width half maximum, FWHM) and high mass accuracy (< 

5ppm), allow us to obtain a predicted empirical formula with high reliability. In addition, an 
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interesting feature (MSE) is feasible nowadays with modern QTOF instruments, which allows 

acquiring simultaneously two full spectrum acquisition functions with different collision 

energies. Using the low energy (LE) function, the information obtained corresponds normally 

to non-fragmented ions, related to the parent molecule. With the high energy (HE) function, 

more abundant fragmentation of the (de)protonated parent compound is obtained. Thus, the 

MSE approach enables the simultaneous acquisition of both parent (de)protonated molecules 

and fragment ions in a single injection [10-13]. However, this approach is not a true product ion 

scan (where only the selected precursor ion is fragmented). If needed, product ion scan 

experiments at accurate mass can also be performed with a QTOF instrument to help in the 

elucidation process of TPs.  

When investigating TPs in degradation experiments, it is important to have available 

specialised software to facilitate the process. In some cases, low abundant compounds might 

not be apparent by visual inspection and, therefore, powerful software with chromatographic 

peak deconvolution capabilities is required for automated component detection. Several 

software packages using different peak detection algorithms are available, and they are usually 

offered by the MS manufacturer. Such algorithms search extracted mass chromatograms for 

metabolites based on predicted or unpredicted molecular changes relative to the parent 

compound and thus aid in the detection and identification of unknowns, particularly those 

buried in baseline noise. The software compares mass spectral chromatograms of a control 

sample versus an analyte sample (i.e. metabolised, stressed or treated sample) and automates 

the detection, identification and reporting of metabolites/TPs [11].  

In this paper, we investigate the formation of degradation/transformation products of 

bromacil in ground water after being subjected to chlorination. Ultra high pressure liquid 

chromatography (UHPLC)-QTOF MS has been applied for this purpose together with the 
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specialized software available in our instrument. Four bromacil TPs have been found and 

elucidated. 

 

EXPERIMENTAL 

Reagents and chemicals 

Bromacil reference standard with purity 99% was obtained from Dr. Ehrenstorfer 

GmbH (Augsburg, Germany). Stock solution (around 500 µg/mL) was prepared by dissolving 

reference standard in acetone and stored in a freezer at -20 ºC. Working solution was prepared 

by diluting stock solution with acetonitrile.  

HPLC-grade water was obtained by purifying demineralised water in a Milli-Q plus 

system from Millipore (Bedford, MA, USA). Acetone (pesticide residue analysis), HPLC-grade 

methanol (MeOH), sodium hydroxide and formic acid (98–100%) were acquired from Scharlau 

(Barcelona, Spain). Leucine enkephalin, used as the lock mass, and imazalil, used during mass 

axis calibration, were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Dr. 

Ehrenstorfer, respectively. 

 

Instrumentation 

A Waters Acquity UPLC system (Waters Corporation, Milford, MA, USA) was 

interfaced to a hybrid quadrupole-orthogonal acceleration-TOF mass spectrometer (Q-oaTOF 

Premier, Waters Corporation, Manchester, UK), using an orthogonal Z-spray-electrospray 

(ESI) interface operating in both positive and negative ion modes. The UPLC separation was 

performed using an Acquity UPLC BEH C18 1.7 µm particle size analytical column 100 × 

2.1mm (Waters Corporation, Milford) at a flow rate of 300 µL/min. The mobile phases used 

were A=H2O with 0.01% HCOOH and B =MeOH with 0.01% HCOOH. The percentage of 
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organic modifier (B) was changed linearly as follows: 0 min, 10%; 9 min, 90%; 11 min, 90%; 

11.1 min, 10%; 14min, 10%. Injection volume was 50 µL.  

Desolvation gas as well as nebulising gas was nitrogen (Praxair, Valencia, Spain). The 

gas flow was set at 600 L/h. TOF-MS resolution was approximately 10,000 FWHM at m/z 

556.2771. MS data were acquired over an m/z range of 50-1000. The microchannel plate 

(MCP) detector potential was set to 1950 V. A capillary voltage of 3.5 kV and cone voltage of 

25 V were used in both positive and negative ionisation modes. Collision gas was argon 

99.995% (Praxair, Valencia, Spain). The interface temperature was set to 350 ºC and the source 

temperature to 120 ºC. The column temperature was set to 60 ºC. 

For MSE experiments, two acquisition functions with different collision energies were 

created: the first one, the low energy function (LE), selecting a collision energy of 4 eV, and 

the second one, the high energy (HE) function, with a collision energy ramp ranging from 15 to 

40 eV. The LE and HE functions settings were both a scan time of 0.1 s and an inter-scan delay 

of 0.05 s. For MS/MS experiments, a collision energy ramp from 15 to 40 eV was also used. 

The automated attenuated function was also selected to correct for possible peak saturations 

(extended mode). Calibrations were conducted in both ionisation modes from m/z 50 to 1000 

with a 1:1 mixture of 0.05 M NaOH :5% HCOOH diluted (1:25) with acetonitrile:water (80:20) 

plus 500 µg/L imazalil (m/z [M+H]+ 297.0561), at a flow rate of 10 µL/min. For automated 

accurate mass measurement, the lock-spray probe was used, using as lockmass a solution of 

leucine enkephalin (2 µg/mL) in acetonitrile:water (50:50) at 0.1% HCOOH pumped at 30 

µL/min through the lock-spray needle. The protonated and deprotonated molecule of leucine 

enkephalin were used for recalibrating the mass axis and ensuring a robust accurate mass 

measurement along acquisition time in ESI+ (m/z 556.2771) and ESI- (m/z 554.2615), 

respectively. Cone voltages were selected to obtain adequate signal intensities for this 

compound (~ 400 counts). 
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It should be noted that all the exact masses shown in this work have a deviation of 0.55 

mDa from the “true” value, as the calculation performed by the MassLynx software uses the 

mass of hydrogen instead of a proton when calculating [M+H]+ exact mass. However, because 

this deviation is also applied during mass axis calibration, there is not negative impact on the 

mass errors presented in this article.  

 

Analytical procedure 

Three ground water samples from the province of Castellon (Eastern Spain) were 

collected in glass bottles (1 L) during the second week of May 2010. Samples were 

immediately stored at 4ºC until analysis.  

50-mL of each water sample were spiked with bromacil at 0.5 µg/mL, by adding 0.5 mL 

of 50 µg/mL standard solution in acetonitrile. Additionally, 50-mL of non-spiked water were 

used as control samples. All experiments were also carried out at 20 µg/mL to facilitate the 

detection of minor TPs.  

Sample aliquots of 2 mL were collected at different times. The first 2-mL aliquot was 

collected before chlorination (t=0). After chlorination (by adding 30 µL of 1% commercial 

sodium hypochlorite), 2-mL water aliquots were taken at different intervals (1, 10 and 30 

minutes). Analysis were performed immediately by injecting directly 50 µL in the UPLC-

QTOF MS system in full scan acquisition mode. 

 

Data processing 

MS data were acquired in centroid mode and processed using MetaboLynx software 

(MassLynx v 4.1) (Waters Corporation, Manchester), which has been proved to be highly 

useful in previous studies on pesticide metabolites/TPs performed at our laboratory [9, 14-16]. 
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RESULTS AND DISCUSSION  

MSE experiments performed (at the high energy function) lead to fragmentation spectra 

similar to those of MS/MS experiments but also conserve the isotopic pattern of the fragments, 

as well as adduct and/or dimer information, as shown in Figures 1 and 2. In addition, both the 

(de)protonated molecule and fragment ion data are available in a single injection, without the 

need of selecting the precursor ion. Using this approach, the QTOF instrument is used in TOF 

mode, but promoting fragmentation in the collision cell in the HE function. In order to avoid 

spectrum interferences that would complicate the identification process, recognizing which ions 

are fragments, and which are not, becomes mandatory. In this sense, UHPLC turned valuable 

for choosing perfectly co-eluting ions. 

Once acquired, data of this work were processed using the available processing 

package, which compares two LC-MS data files (sample and control). The differences resulting 

from the presence of new compounds, which should be, in principle, due to the transformation 

processes occurring in the sample, are highlighted. Figure 3a shows Total Ion Chromatograms 

(TICs) corresponding to the control (top) and the sample (bottom) after 1 minute of 

chlorination. At a first glance, there are no differences between them and not visible differential 

peaks are observed. However, after processing data using MetaboLynx, four TPs were found 

(Table 1). As an example, Figure 3b shows the narrow-window eXtracted Ion Chromatograms 

(nw-XICs), at m/z 175.1113, corresponding to the transformation product numbered as 3 (TP 

3). 

On the basis of their accurate masses, possible elemental compositions for the TPs 

detected were calculated using the elemental composition calculator tool, obtaining mass errors 

as shown in Table 1. Maximum and minimum parameter settings for all compounds were 

restricted as a function of the structure of bromacil (C9H13BrN2O2): C:0-11, H:0-20, O:0-10, N: 
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0-10. The number of Br was determined from the observed isotopic pattern and added if 

required (in this case, none of the TPs maintained the bromine atom in its structure). The 

applied double-bond equivalent (DBE) filter, which gives information about aromaticity of the 

structure, was set between 3.5 and 10. Additionally, the option ‘‘even-electrons ions only’’ was 

selected for the (de)protonated molecule.  

Accurate masses of the neutral losses observed in both HE and LE spectra were 

investigated in order to reduce the number of possible molecular formulae and facilitate the 

prediction of a plausible structure. For the elemental composition calculation of fragment ions, 

the parameter settings were restricted by the calculated elemental composition of the 

(de)protonated TP, while for neutral losses no restrictions were used. In this case, the option 

‘‘both odd and even-electrons ions only’’ was selected for calculating their elemental 

compositions. With these restrictions, the first proposed elemental composition was the right 

option in all cases. For those compounds which presented a poor MSE fragmentation, product 

ion scan experiments (MS/MS experiments) were also carried out, to promote the production of 

more abundant fragment ions. 

The results obtained in our experiment are summarized in Tables 1 and 2. These tables 

show MS data for the 4 TPs detected and for their main fragments, respectively. Mass errors of 

both (de)protonated molecule and fragment/product ions are shown. As it can be seen, most of 

deviations were lower than 2 mDa. After 30 minutes, TP1 still remained visible with a similar 

area, whereas the areas of the other TPs decrease considerably. Therefore, TP1 would be the 

most important from an environmental point of view. 

Figure 4 shows the nw-XICs for parent bromacil and their TPs in positive and negative 

ionisation modes. As it can be seen, the presence of herbicide bromacil was not detected even 

only one minute after chlorination, while the peaks corresponding to three TPs (ESI+) and one 

more TP (ESI-) were clearly observed.  
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For identification of the new TPs, the fragmentation patterns of both the protonated and 

the deprotonated parent compound were firstly studied. Figure 1 shows LE and HE functions 

of the parent bromacil in both positive and negative ionisation modes, as well as proposed 

fragment ions using MassFragment software. However, due to the important change in the 

structure of TPs, the fragmentation of the bromacil was not useful for elucidating them. 

 

Proposal of transformation product 1. 

Figure 5 illustrates the elucidation process for TP1. The accurate mass of the protonated 

molecule, with retention time 2.49 min, was measured to be m/z 117.1025. This mass differed 

0.3 mDa from m/z 117.1028, which corresponds to an elemental composition of [M+H]+ 

C5H13N2O. After observing the structure of bromacil, it seems that the ring has been opened. As 

this compound presented poor fragmentation in both LE and HE spectra, MS/MS experiments 

were performed using the same collision energy ramp than in MSE mode as well as at different 

fixed collision energies (10, 20, 30 and 40 eV) trying to obtain more abundant fragmentation. 

However, poor fragmentation still occurred (see Figure 5), although two low abundant product 

ions could be now observed. Product ions showed m/z 61.0388 (CH5N2O, ΔmDa=-1.4, as 

regards the theoretical exact mass) and 57.0693 (C4H9, ΔmDa=1.1, corresponding to the sec-

butyl group) and were in accordance with the structure proposed in Figure 5. It is interesting to 

remark that this TP had been previously reported by our own group when studying the 

photodegradation of bromacil [9]. In that occasion, a poor fragmentation was also observed. 

 

Proposal of TP 2. 

Figure 6 shows the elucidation process for TP2. The accurate mass of the protonated 

molecule, with retention time 2.53 min, was found to be m/z 233.1142. This mass differed 0.5 
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mDa from m/z 233.1137, which corresponds to an elemental composition of [M+H]+ 

C9H17N2O5. This could be due to the loss of bromine (Br isotopic pattern was not observed) and 

an increase of three atoms of oxygen and two atoms of hydrogen, suggesting that an oxidative 

process had occurred.  

 The LE spectra of TP2 ([M+H]+ C9H17N2O5, m/z 233.1142, ΔmDa=0.5) already showed 

fragment ions at m/z 215.1028 (ΔmDa=-0.6, as regards the theoretical exact mass), 197.0938 

(ΔmDa=1.2), and 177.0526 (ΔmDa=1.5), which resulted from losses of one molecule of water, 

two molecules of water and the butene group, respectively, from the parent ion m/z 233.1142. 

Fragment ions at m/z 159.0411 (ΔmDa=0.5) and 141.0304 (ΔmDa=0.4) were also observed, 

which resulted from losses of one and two molecules of water, respectively, from the ion m/z 

177.0526. A fragment ion at m/z 169.0968 was also observed, corresponding to the direct loss 

of water plus formic acid from the parent ion. As it has been previously commented, when 

working with MSE approach, it is important to recognize which ions are fragments, and which 

are not. Figure 6 shows nw-XICs for protonated molecule and several fragment ions. As it can 

be see, all ions perfectly coelute.  

On the basis of this information, two possible structures for this TP were proposed. The 

structures suggested are supported by our experimental accurate data. Both structures would 

match with the butene loss, which indicates that no oxidation has been carried out in this group. 

Moreover, it would not involve the reduction of a carbonyl group (usually, the chlorination is 

an oxidative process) and therefore ring and/or lateral chain would have been oxidized. This TP 

was only observed in ESI positive mode. In this case, although it is very difficult to predict 

whether it should also show up in negative-ion mode, having an –N-COOH group looks quite 

logical its no detection in negative-ion mode. The ring opening was the only way to explain a 

DBE of 3 in the molecule without producing a reduction. Moreover, these structures would also 

explain the fragment ion at m/z 169.0968 as a formic acid loss from m/z 215.1028 At this point, 
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it would be interesting to make additional experiments with, for example, labeled standards or 

trying to synthesize this compound to have better support on the structure suggested. Up to our 

knowledge, this TP has not been previously reported in the literature.  

 

Proposal of TP 3. 

Regarding TP3 (retention time 5.32 min), accordingly to the accurate mass 

measurement, the elemental composition of the protonated molecule was found to be 

C7H15N2O3 (ΔmDa=3). This implies the loss of two carbon atoms respect to bromacil and the 

increase of one atom of oxygen, apart from the bromine loss. In this case, two fragment ions 

were also observed in the LE spectra. The fragment at m/z 119.0473 (C3H7N2O3, ΔmDa=1.6) 

was due to a butene loss, therefore indicating that this group was still present in this TP. The 

structure suggested is shown in Figure 7, which also would explain the fragment at m/z 

76.0408 (ΔmDa=0.9). The loss of two carbon atoms would surely be produced by a 

rearrangement in the ring during bromine loss. Up to our knowledge, this TP has not been 

previously reported in the literature.  

 

Proposal of TP 4. 

This TP was only observed in ESI negative mode. The elemental composition of the 

deprotonated molecule corresponding to TP4 (3.96 min) was found to be C7H9N2O3 (ΔmDa=1). 

Comparing this elemental composition with the deprotonated molecule of bromacil 

(C9H12BrN2O2) also a loss of two atoms of carbon was observed, suggesting the same 

rearrangement than in TP3. The increase in one atom of oxygen together with the decrease in 

the number of hydrogens suggested an oxidation to ketones. We propose the structure shown in 

Figure 8, which also explains the negative ionization because of the two keto groups 
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surrounding the NH, which makes the hydrogen very acidic. This structure has some 

similarities to barbiturates (also ring with C=O and NH, and one alkyl-substitued N), which 

also primarily show up in negative-ion mode rather than on positive ion mode. So, it seems 

reasonable that this compound was not detected in positive-ion mode. This TP had already been 

reported by Acher et al [3] and Hapemman et al [4]. In this case, no fragment ions were 

obtained after performing MS/MS experiments or after increasing the ramp in the HE function. 

Therefore, little information was available for a further confirmation of its identity.  

 As a summary, Figure 9 shows the structures suggested for different bromacil TPs 

formed in water after being subjected to ozonolysis or photodegradation (reported in the 

literature) and after chlorination experiments (results of this paper). Three TPs have been 

reported in ozonolysis experiments. One of these compounds has also been detected in the 

chlorination process (TP4). Regarding photodegradation, five TPs had been identified until 

now, and again one of these TPs has been found in the chlorination experiments [TP1]. 

Although standards for reported TPs are not commercially available, it seems that TP1 is the 

major TP detected after the chlorination process. Two additional TPs have been identified in 

the chlorination experiments (TPs 2 and 3). Up to our knowledge, they have not been 

previously reported in the literature. 
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CONCLUSIONS 

This work has demonstrated that hybrid quadrupole time of flight (QTOF) mass 

spectrometry is a valuable technique for proposal of transformation products of selected 

organic contaminants in degradation experiments. In this article, herbicide bromacil TPs have 

been investigated in groundwater after being subjected to chlorination. The complete 

disappearance of bromacil was observed, even only one minute after chlorination. Combining 

MSE and MS/MS experiments has allowed the detection and identification of four TPs after 

direct injection of aqueous sample extracts (control and spiked), without the need of laborious 

sample pre-treatment, and minimising possible losses of analytes along the analytical 

procedure. On the basis of the results obtained, in those waters contaminated by bromacil and 

subjected to chlorination, it would be more interesting the investigation of the presence of the 

TPs reported in this work than the bromacil parent, due to its rapid degradation. 
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TABLES 

Table 1. Exact mass measurements and mass errors for the bromacil TPs detected  

 
Proposed 
compound 

ret time 
(min) 

Ionisation
modes 

Elemental composition 
[M+H]+/ [M-H]- 

Experimental mass 
[M+H]+/ [M-H]- 

theoretical mass 
[M+H]+/ [M-H]- Deviation (mDa) 

parent 5.6 ESI+ C9H14BrN2O2 261.0243 261.0239 0.4 
  ESI- C9H12BrN2O2 259.0089 259.0082 0.7 

TP1 2.5 ESI+ C5H13N2O 117.1025 117.1028 -0.3 
TP2 2.5 ESI+ C9H17N2O5 233.1142 233.1137 0.5 
TP3 5.3 ESI+ C7H15N2O3 175.1113 175.1083 3 
TP4 3.9 ESI- C7H9N2O3 169.0603 169.0613 -1 
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Table 2. Transformation products identified in the degradation study of bromacil. Mass fragments and mass errors for the proposed compounds 

obtained by UHPLC-ESI-(Q)TOF MS. 

 

Compound Ionization 
mode 

MS mode  Theoretical mass 
fragments 

Deviation  
(mDa) 

Fragment ions or losses 

      

bromacil ESI+ MSE 204.9613 1.1  -butene 
   187.9347 1.2 C5H3NO2Br  
   161.9554 1.6 C4H5NOBr  
   131.9449 1.5 C3H3NBr  
       
 ESI- MSE 202.9456 -1.0  -butene 
   159.9398 -0.3 C4H3NOBr  
   78.9183 2.1 Br  
      
      

TP1 ESI+ MS/MS (117)* 61.0402 -1.4  -butene 
   57.0704 1.1 sec-butyl  
      
      

TP2 ESI+ MSE 215.1034 -0.6  -H2O 
   197.0926 1.2  -2H2O 
   177.0511 1.5  -butene 
   169.0977 -0.9  -H2O-HCOOH 
   159.0406 0.5  -butene-H2O 
   141.0300 0.4  -butene-2H2O 
      
      
      

TP3 ESI+  MSE 119.0457 1.6  -butene 
   76.0399 1.1 C2H6NO2  
      
      

TP4 ESI- MSE -   
      
      

      

*Precursor ion 
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FIGURE CAPTIONS 

Figure 1. LE and HE spectra of bromacil for both ionization modes. 

Figure 2. MS/MS spectra of bromacil in both ionization modes, using as precursor ions the 

(de)protonated molecule and the peak corresponding to the isotopic pattern. 

Figure 3. (a) Total Ion Chromatograms and (b) eXtracted Ion Chromatograms at m/z 175.1113, 

for control (top) and analyte samples (bottom) (T=1 min). 

Figure 4. UHPLC-(Q)TOF MS eXtracted Ion Chromatograms in positive and negative ionization 

mode (LE funtion) corresponding to parent bromacil and the four TPs detected in ground water 

spiked with bromacil at 20 µg/mL: (a) before chlorination and (b) one minute after chlorination 

Figure 5. UHPLC-QTOF MS chromatogram, full scan spectra (LE) and product ion spectra of 

TP1 in positive ionization mode. 

Figure 6. UHPLC-(Q)TOF MS chromatogram and full scan spectra (LE) of TP2 in positive 

ionization mode. XICs at 20 mDa mass window for the protonated molecule and the two fragment 

ions observed in LE function.  

Figure 7. UHPLC-(Q)TOF MS chromatogram and full scan spectra (LE) of TP3 in positive 

ionization mode. XICs at 20 mDa mass window for the protonated molecule and different 

fragment ions observed in LE function.  

Figure 8. UHPLC-(Q)TOF MS chromatogram and full scan spectra (LE) of TP4 in negative 

ionization mode. 

Figure 9. Bromacil TPs identified in different degradation experiments: (ch) TPs detected after 

water chlorination (this work), (ph) TPs detected in photodegradation experiments (254 nm), (ph*) 

TPs detected in sensitized sunlight photodegradation (400-700 nm), (oz) TPs detected after 

ozonolysis. 
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