765 research outputs found
Evaluation of a novel reference chamber “stealth chamber” through Monte Carlo simulations and experimental data
Purpose: To evaluate a novel reference chamber (Stealth Chamber by IBA) through experimental data and Monte Carlo simulations for 6 and 15 MV photon energies. Methods: Monte Carlo simulations in a water phantom for field sizes ranging from 3×3 and 25×25 cm2 were performed for both energies with and without the Monte Carlo model of the Stealth Chamber in the beam path, and compared to commissioning beam data. Percent depth doses (PDDs), profiles, and gamma analysis of the simulations were performed along with an energy spectrum analysis of the phase-space files generated during the simulation. Experimental data were acquired in water with IBA three-dimensional (3D) blue phantom in a set-up identical to the one used in the Monte Carlo simulations. PDD comparisons for fields ranging from 1×1 to 25×25 cm2 were performed for photon energies. Profile comparison for fields ranging from 1×1 to 25×25 cm2 were executed for the depths of dmax, 5, 10 and 20 cm. Criteria of 1%, 1 mm to compare PDDs and profiles were used. Transmission measurements with the Stealth Chamber and a Matrixx detector from IBA were investigated. Measurements for 6 and 15 MV with fields ranging from 3×3 to 25×25 cm2 dimensions were acquired in an open field with and without the Stealth Chamber in the path of the beam. Profiles and gamma analysis with a 1%, 1 mm gamma analysis criterion were performed. Results: Monte Carlo simulations of the PDDs and profiles demonstrate the agreement between both simulations. Furthermore, the gamma analysis (1%, 1 mm) result of the comparison of both planes has 100% of the points passing the criteria. The spectral distribution analysis of the phase spaces for an open field with and without the chamber reveals the agreement between both simulations. Experimental measurements of PDDs and profiles have been conducted and reveal the comparability of relative dosimetric data acquired with the Stealth Chamber and our gold standard the CC13 chamber. Transmission data measured with an ion chamber array (Matrixx) showed the small attenuation caused by the use of the Stealth Chamber. Conclusion: Simulations and experimental results from this investigation indicate the benefits associated with chamber positioning and time expended during the acquisition of the relative measurements of PDDs and profiles for the beam commissioning of photon beams when the Stealth Chamber is used as a reference chamber to perform these tasks. The results demonstrate that relative profiles and PDDs scanned with the Stealth Chamber in place are consistent with those made using a CC13 chamber within a 1% and 1 mm criterion
Image-guided radiation therapy (IGRT) in prostate cancer in México, survey of SOMERA (Sociedad Mexicana de Radioterapeutas/Mexican Society of Radiation Oncologists) with recommendations on its implementation and process
Background: Prostate cancer is one of the main tumors worldwide, its treatment is multidisciplinary, includes radiotherapy in all stages: curative, radical, adjuvant, salvage and palliative. Technological advances in planning systems, image acquisition and treatment equipment have allowed the delivery of higher doses limiting toxicity in healthy tissues, distributing radiation optimally and ensuring reproducibility of conditions. Image-guided radiotherapy (IGRT) is not standard in guidelines, only recommended with heterogeneity in its own process.
Materials and methods: A survey was conducted to members of the Mexican Society of Radiation Oncologists (SOMERA), to know the current status and make recommendations about its implementation and use, taking into account existing resources.
Results: Responses of 541 patients were evaluated, 85% belonged to the intermediate-high risk group, 65% received adjuvant or salvage radiotherapy (RT), 80% received intensity-modulated radiation therapy (IMRT) using doses up to 80 Gy/2 Gy. Cone beam computed tomography (CBCT) was performed on 506 (93.5%), (100% IMRT) and 90% at a periodicity of 3–5/week. 3D treatment with 42% portal images 1/week. Online correction strategies (36% changes before treatment), following a diet and bladder and rectal control. Evidence and recommendations are reviewed.
Conclusions: IGRT should be performed in patients with prostate cancer. In Mexico, despite limitations in the distribution of human and technological resources, it is routinely applied. More information is still needed on clinical evidence of its benefits and the process should be implemented according to infrastructure, following institutional guidelines, recommending to report the initial experience that helps to standardize national conduct
Inorganic Tin Perovskites with Tunable Conductivity Enabled by Organic Modifiers
Achieving control over the transport properties of charge-carriers is a
crucial aspect of realizing high-performance electronic materials. In
metal-halide perovskites, which offer convenient manufacturing traits and
tunability for certain optoelectronic applications, this is challenging: The
perovskite structure itself, poses fundamental limits to maximum dopant
incorporation. Here, we demonstrate an organic modifier incorporation strategy
capable of modulating the electronic density of states in halide tin
perovskites without altering the perovskite lattice, in a similar fashion to
substitutional doping in traditional semiconductors. By incorporating organic
small molecules and conjugated polymers into cesium tin iodide (CsSnI3)
perovskites, we achieve carrier density tunability over 2.7 decades, transition
from a semiconducting to a metallic nature, and high electrical conductivity
exceeding 200 S/cm. We leverage these tunable and enhanced electronic
properties to achieve a thin-film, lead free, thermoelectric material with a
near room-temperature figure-of-merit (ZT) of 0.21, the highest amongst all
halide perovskite thermoelectrics. Our strategy provides an additional degree
of freedom in the design of halide perovskites for optoelectronic and energy
applications
A Monte Carlo model for independent dose verification in IMRT and VMAT for the Varian Novalis TX with high definition MLC
Purpose: With intensity modulated radiation therapy (IMRT), the physician can prescribe, design and deliver optimized treatment plans that target the tumor and spare adjacent critical structures. The increased conformity of such plans often comes at the expenses of adding significant complexity to the delivery of the treatment. With volumetrically modulated arc therapy (VMAT), in addition to the modulation of the intensity of the radiation beam, other mechanical parameters such as gantry speed and dose rate are varied during treatment delivery. It is therefore imperative that we develop comprehensive and accurate methods to validate such complex delivery techniques prior to the commencement of the patient’s treatment. Methods: In this study, a Monte Carlo simulation was performed for the high definition multileaf collimator (HD-MLC) of a Varian Novalis TX linac. Our simulation is based on the MCSIM code and provides a comprehensive model of the linac head. After validating the model in reference geometries, treatment plans for different anatomical sites were simulated and compared against the treatment planning system (TPS) dose calculations. All simulations were performed in a cylindrical water phantom as opposed to the patient anatomy, to remove any complexities associated with density effects. Finally, a comparison through gamma analysis of dose plane between the simulation, the TPS and the measurements from the Matrixx array (IBA) was conducted to verify the accuracy of our model against both the measurements and the TPS. Results: Gamma analysis of ten IMRT and ten VMAT cases for different anatomical sites was performed, using a 3%/3 mm passing criterion. The average passing rates were 97.5% and 94.3% for the IMRT and the VMAT plans respectively when comparing the MCSIM and TPS dose calculations. Conclusion: In the present work a Monte Carlo model of a Novalis TX linac which has been tested and benchmarked to produce phase-space files for the treatment head of the linac was used to produce a input phase-space to calculated dose deposition phenomena in different geometries for IMRT and VMAT treatment modalities. The control points defined for the MLC were replaced by blocks with the same characteristics and materials of the linac MLC to speed up the simulation time. With this technique a simulation of a typical IMRT case can be performed with a 10 computer cluster in about 1.02 hours in average. If the number of computer used is increased the computing time can be reduced even more which make our model suitable for clinical use as a second check method to compare the TPS dose calculated. Our results showed that for IMRT and VMAT deliveries with a HD-MLC, there is an average of 95.9% of the points have a gamma index less than 1 with our chosen criterion between our Monte Carlo simulations and the corresponding measurements and TPS calculations in a cylindrical water equivalent phantom. This Monte Carlo code can be used as pre-treatment, independent dose calculation verification for IMRT and VMAT deliveries
Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine‐depleted mice
For more than three decades it has been known, that striatal neurons become hyperactive after the loss of dopamine input, but the involvement of dopamine (DA) D1‐ or D2‐receptor‐expressing neurons has only been demonstrated indirectly. By recording neuronal activity using fluorescent calcium indicators in D1 or D2 eGFP‐expressing mice, we showed that following dopamine depletion, both types of striatal output neurons are involved in the large increase in neuronal activity generating a characteristic cell assembly of particular neurons that dominate the pattern. When we expressed channelrhodopsin in all the output neurons, light activation in freely moving animals, caused turning like that following dopamine loss. However, if the light stimulation was patterned in pulses the animals circled in the other direction. To explore the neuronal participation during this stimulation we infected normal mice with channelrhodopsin and calcium indicator in striatal output neurons. In slices made from these animals, continuous light stimulation for 15 s induced many cells to be active together and a particular dominant group of neurons, whereas light in patterned pulses activated fewer cells in more variable groups. These results suggest that the simultaneous activity of a large dominant group of striatal output neurons is intimately associated with parkinsonian symptoms
Espacios con distancias no simétricas
"En los espacios asimétricos la distancia entre dos puntos tiene orientación, es decir, la distancia de A a B, puede diferir de la distancia de B a A. En forma similar, en un espacio normado asimétrico, la norma o magnitud de un vector v puede no coincidir con la norma del vector -v.
En este trabajo exploramos algunas de las consecuencias de este cambio y establecemos resultados topológicos básicos para estos espacios, damos algunas de las definiciones y resultados principales sobre espacios cuasi-semimétricos y seminormados asimétricamente, ilustrando con ejemplos el comportamiento topológico de éstos. Entre los resultados importantes que se presentan están: la caracterización de las bolas con respecto a la semimétrica ρs , generada por la cuasisemimétrica ρ, así como la caracterización de la topología generada por ρs , en función de las topologías generadas por ρ y ρ. Los ejemplos de espacios normados asimétricamente que se dan aquí ilustran de manera gráfica las bolas con respecto a ρ, ρs y ρ mostrando la relación entre ellas. Esta es un área de estudio en vigoroso desarrollo, pues el análisis funcional asimétrico no ha sido llevado aún hasta los límites que ha llegado en el caso simétrico, tarea pendiente y necesaria dadas las aplicaciones que ya han encontrado en algunas áreas como el análisis de complejidad de algoritmos y en teoría de aproximación, por citar sólo dos de ellas.
Enfrentando los riesgos socionaturales
El objetivo del libro es comprender la magnitud de los Riesgos Socionaturales en México y Latinoamérica, para comprender el peligro que existe por algún tipo de desastre, ya sea inundaciones, sismos, remoción en masa, entre otros, además conocer qué medidas preventivas, correctivas y de contingencias existen para estar atentos ante alguna señal que la naturaleza esté enviando y así evitar alguna catástrofe. El libro se enfoca en los aspectos básicos de análisis de los peligros, escenarios de riesgo, vulnerabilidad y resiliencia, importantes para la gestión prospectiva o preventiva
Search for very-high-energy emission from Gamma-ray Bursts using the first 18 months of data from the HAWC Gamma-ray Observatory
The High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory is an
extensive air shower detector operating in central Mexico, which has recently
completed its first two years of full operations. If for a burst like GRB
130427A at a redshift of 0.34 and a high-energy component following a power law
with index -1.66, the high-energy component is extended to higher energies with
no cut-off other than from extragalactic background light attenuation, HAWC
would observe gamma rays with a peak energy of 300 GeV. This paper
reports the results of HAWC observations of 64 gamma-ray bursts (GRBs) detected
by and , including three GRBs that were also
detected by the Large Area Telescope (-LAT). An ON/OFF analysis
method is employed, searching on the time scale given by the observed light
curve at keV-MeV energies and also on extended time scales. For all GRBs and
time scales, no statistically significant excess of counts is found and upper
limits on the number of gamma rays and the gamma-ray flux are calculated. GRB
170206A, the third brightest short GRB detected by the Gamma-ray Burst Monitor
on board the satellite (-GBM) and also
detected by the LAT, occurred very close to zenith. The LAT measurements can
neither exclude the presence of a synchrotron self-Compton (SSC) component nor
constrain its spectrum. Instead, the HAWC upper limits constrain the expected
cut-off in an additional high-energy component to be less than
for reasonable assumptions about the energetics and redshift of the burst.Comment: 19 pages, 6 figures, published in Ap
All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
We report on the measurement of the all-particle cosmic ray energy spectrum
with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range
10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes
of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to
gamma rays and cosmic rays at TeV energies. The data used in this work were
taken from 234 days between June 2016 to February 2017. The primary cosmic-ray
energy is determined with a maximum likelihood approach using the particle
density as a function of distance to the shower core. Introducing quality cuts
to isolate events with shower cores landing on the array, the reconstructed
energy distribution is unfolded iteratively. The measured all-particle spectrum
is consistent with a broken power law with an index of prior to
a break at ) TeV, followed by an index of . The
spectrum also respresents a single measurement that spans the energy range
between direct detection and ground based experiments. As a verification of the
detector response, the energy scale and angular resolution are validated by
observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
- …