15 research outputs found

    Molecular epidemiology and temporal evolution of norovirus associated with acute gastroenteritis in Amazonas state, Brazil

    No full text
    Abstract Background Globally, Norovirus (NoV) is considered the most common cause of diarrheal episodes across all age groups. Despite its wide genetic diversity, the GII.4 strain is the most predominant and has been associated with epidemics worldwide. In this study, we characterized sporadic cases of diarrhea from NoV-positive children, during a five-year period (2010–2014). Methods A total of 250 NoV-positive samples identified by an enzyme immunoassay (EIA) were subjected to RT-PCR and partial nucleotide sequencing for polymerase and capsid genes. Phylogenetic analysis was performed to identify NoV genotypes using the binary classification. In addition, sequences from the P2 subdomain (capsid) gene of GII-4 variants were characterized by evolutionary analyses, using the MCMC method implemented in the BEAST package. A 3D structure was built using protein modeling. Results Phylogenetic analysis demonstrated a predominance of genotype GII.4 (52.4% - 99/189), variants New Orleans_2009 and Sydney_2012 followed by GII.P7/GII.6 with 6.3% (12/189). Amino acid analyses of the GII.4 strains showed several important amino acid changes. A higher evolutionary rate was found, 7.7 × 10− 3 in the Sydney variant and 6.3 × 10− 3 in the New Orleans. Based in evolutionary analysis the time to the most recent common ancestor (TMRCA) has been calculated as estimates of the population divergence time. Thus, TMRCA for New Orleans and Sydney variant were 2008.7 and 2010.7, respectively. Also, we observed a lineage of transition between New Orleans and Sydney. Conclusion This study describes the different strains of norovirus isolated from Amazonas state in Brazil during a five-year period. Considering that NoV are capable of changing their antigenic epitopes rapidly, a continuous surveillance is important to monitor the occurrence and changes of the NoV in the community through epidemiological studies. These results contribute to the understanding of NoV molecular epidemiology and its evolutionary dynamics in Amazonas state, Brazil

    Análise de recombinantes de norovírus incomuns de Manaus, Amazon região, Brasil: GII. P22 / GII. 5, GII. P7 / GII. 6 e GII. Pg / GII. 1

    No full text
    Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Norovirus (NoV) is responsible for outbreaks and sporadic cases of nonbacterial acute gastroenteritis in humans worldwide. The virus consists of small round particles containing a single-stranded RNA genome that is divided into three Open Reading Frames. NoV evolves via mechanisms of antigenic drift and recombination, which lead to the emergence of new strains that are capable of causing global epidemics. Recombination usually occurs in the ORF1/ORF2 overlapping region and generates strains with different genotypes in the polymerase and capsid region. The primary objective of this study was to analyze recombination in positive-NoV samples. Specimens were collected during 2011, 2012 and 2014, from children under two years of age presenting gastrointestinal symptoms such as vomiting and diarrhea. The partial polymerase (B region), capsid (D region) genes and the ORF1-ORF2 overlap regions were sequenced in each sample. The recombinant analyses were performed in the Simplot software v.3.5.1 and RDP4 Beta v. 4.6 program. These analyses showed that GII.Pg/GII.1, GII.P7/GII.6, and GII.P22/GII.5 were recombinant strains. To our knowledge, this is the first time that the GII.P22/GII.5 and GII.Pg/GII.1 strains were described in South America and the GII.P7/GII.6 was detected in Northern of Brazil

    Norovirus RNA in serum associated with increased fecal viral load in children: Detection, quantification and molecular analysis.

    No full text
    Worldwide, norovirus (NoV) is a major cause of acute gastroenteritis (AGE) responsible for pandemics every ~3 years, and over 200,000 deaths per year, with the majority in children from developing countries. We investigate the incidence of NoV in children hospitalized with AGE from Belém, Pará, Brazil, and also correlated viral RNA levels in their blood and stool with clinical severity. For this purpose, paired stool and serum samples were collected from 445 pediatric patients, ≤9 years between March 2012 and June 2015. Enzyme-linked immunosorbent assay (EIA) was used to detect NoV in stool and reverse transcription quantitative PCR (RT-qPCR) used to quantify NoV RNA levels in sera (RNAemia) and in the positive stool. Positives samples were characterized by the partial ORF1/2 region sequence of viral genome. NoV antigen was detected in 24.3% (108/445) of stool samples, with RNAemia also present in 20.4% (22/108). RNAemia and a high stool viral load (>107 genome copies/gram of faeces) were associated with longer hospitalizations. The prevalent genotypes were GII.4 Sydney_2012 (71.6%-58/81) and New Orleans_2009 (6.2%-5/81) variants. Eight other genotypes belonging to GII were detected and four of them were recombinant strains. All sera were characterized as GII.4 and shared 100% similarity with their stool. The results suggest that the dissemination of NoV to the blood stream is not uncommon and may be related to increased faecal viral loads and disease severity

    Retrospective molecular analysis of norovirus recombinant strains in the amazon region, Brazil

    No full text
    Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Programa de Iniciação Científica. Ananindeua, PA, Brasil.Federal University of Pará. Postgraduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Background: Noroviruses are enteric viruses that cause acute gastroenteritis worldwide. Over two decades, GII.4 genotype was responsible for most cases. However, recombinant strains have emerged and changed the epidemiological context of these infections. Objectives: The aim of this study was to identify the recombinant genetic strains of norovirus causing gastroenteritis in Brazilian children from the Amazon region. Methods: We analyzed 534 cases of gastroenteritis between 2015 and 2016. Genotypic characterization was performed by partial sequencing of ORF1 and ORF2. Evolutionary history was inferred by Bayesian inference using MrBayes. Recombinant strains were confirmed by Simplot and RDP4 analysis. Findings: We performed viral detection tests and identified a norovirus frequency of 31.8% (175/534). Based on viral RdRp and VP1 genes, nine genotypes were identified: GIIP31/GII.4, GII·P16/GII.4, GII·P7/GII.6, GII·P21/GII.13, GII·P33/GII.1, GII·P17/GII.17, GI·P7/GI.7, GII·P4/NT, and GII.7/NT. The phylogenetic tree showed evolutionary relationships among the genotypes, including the recombinant strains. This is the first description of GII·P33/GII.1 and GII·P21/GII.13 genotypes in Brazil. Conclusion: Norovirus evolution has been characterized by the continuous replacement of variants that have new antigenic properties. In recent years, recombinant strains have displaced GII.4, improving the viral fitness and influencing the viral transmissibility and pathogenicity

    Occurrence of norovirus Giv In environmental water samples from Belém City, Amazon Region, Brazil

    No full text
    Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil / Federal University of Para. Tropical Medicine Center. Postgraduate Program in Tropical Diseases. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Noroviruses are the major cause of non-bacterial acute gastroenteritis outbreaks in humans, with few reports about the occurrence of the norovirus GIV strain. We investigated the presence of norovirus GIV in surface water (river, bay, and stream) and untreated sewage, and we determined a positivity rate of 9.4 % (9/96). The strains genotyped were GIV.1. To our knowledge, this is the first report of GIV in Brazil

    Evolutionary and molecular analysis of complete genome sequences of norovirus from Brazil: emerging recombinant strain GII.P16/GII.4

    No full text
    PAPQ/PROPESP ; PPG-BAIP/UFPA ; Evandro Chagas Institute, Secretary of Health Surveillance, Ministry of Health (IEC/SVS/MS)Federal University of Pará. Institute of Biological Sciences. Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Federal University of Pará. Institute of Biological Sciences. Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Noroviruses (NoVs) are enteric viruses that cause acute gastroenteritis, and the pandemic GII.4 genotype is spreading and evolving rapidly. The recombinant GII.P16/GII.4_Sydney strain emerged in 2016, replacing GII.P31/GII.4_Sydney (GII.P31 formerly known as GII.Pe) in some countries. We analyzed the complete genome of 20 NoV strains (17 GII.P31/GII.4_ Sydney and 3 GII.P16/GII.4_Sydney) from Belém and Manaus, Brazil, collected from 2012 to 2016. Phylogenetic trees were constructed by maximum likelihood method from 191 full NoV-VP1 sequences, demonstrated segregation of the Sydney lineage in two larger clades, suggesting that GII.4 strains associated with GII.P16 already have modifications compared with GII.P31/GII.4. Additionally, the Bayesian Markov Chain Monte Carlo method was used to reconstruct a time-scaled phylogenetic tree formed by GII.P16 ORF1 sequences (n = 117) and three complete GII.P16 sequences from Belém. The phylogenetic tree indicated the presence of six clades classified into different capsid genotypes and locations. Evolutionary rates of the ORF1 gene of GII.P16 strains was estimated at 2.01 × 10–3 substitutions/site/year, and the most recent common ancestors were estimated in 2011 (2011–2012, 95% HPD). Comparing the amino acid (AA) sequence coding for ORF1 with the prototype strain GII.P16/GII.4, 36 AA changes were observed, mainly in the non-structural proteins p48, p22, and RdRp. GII.P16/GII.4 strains of this study presented changes in amino acids 310, 333, 373, and 393 of the antigenic sites in the P2 subdomain, and ML tree indicating the division within the Sydney lineage according to the GII.P16 and GII.P31 polymerases. Notably, as noroviruses have high recombination rates and the GII.4 genotype was prevalent for a long time in several locations, additional and continuous evolutionary analyses of this new genotype should be needed in the future

    SAPOVIRUSES IN CHILDREN WITH ACUTE GASTROENTERITIS FROM MANAUS , AMAZON REGION, BRAZIL, 2010-2011

    No full text
    SUMMARY Sapoviruses (SaVs) are responsible for acute gastroenteritis in humans, especially children and the elderly. In Brazil, data on SaVs infections are very limited, especially in Northern Brazil. Here, we investigated the occurrence of SaVs in samples from hospitalized children under ten years old that presented acute gastroenteritis. Positive samples were genotyped and phylogenetic analysis was performed using prototype strains sequences obtained from GenBank database. In total, 156 fecal samples were screened by RT-PCR for SaVs. A positivity rate of 3.8% (6/156) was found in children under three years of age. Four genotypes were detected: GI.I, GI.2 and GII.2?-GII.4?/GII.4, suggesting a possible inter-genotypes recombination. Most infections (83.3%) occurred between August and September. The positivity was similar to that found in other countries and genotyping demonstrated the presence of distinct genotypes. To our knowledge, this is the first study reporting the circulation of SaVs in Manaus, state of Amazonas, Amazon region, Brazil

    Norovirus RNA in serum associated with increased fecal viral load in children: Detection, quantification and molecular analysis - Fig 6

    No full text
    <p>Simplot analysis of the ORF1-ORF2 overlap sequence (530 bp) of the strains VIR613F (MG023180)/ VIR699F (MG023186)/ VIR715F (MG023183) (a), VIR554F (MG023188) /VIR693F (MG023184) (b), VIR 138F (MG023190) (c), VIR 560 (MG023187) (d). The assay was performed using standards parameters of the program with a window size of 200 bp, a step size of 20 bp and with the Kimura (2-parameter) model. The accession numbers of the prototypes used in the analyses were the following: GII.P13/GII.13 (EU921354.2), GII.17/GII.17 (AY502009.1), GII.P22/GII.22 (AB233471), GII.P5/GII.5 (AF397156), GII.P7/GII.7 (JQ751043), GII.P6/GII.6 (AB039778), GI.Pb/GI.6 (AB081723), GI.6/GI.6 (AF093797), GI.Pb/GI.6 (AB354289). The y-axis indicates the nucleotide sequence similarity between the recombinant sequence and reference strains. The y-axis indicates nucleotide position.</p

    SAPOVIRUSES IN CHILDREN WITH ACUTE GASTROENTERITIS FROM MANAUS , AMAZON REGION, BRAZIL, 2010-2011

    No full text
    SUMMARY Sapoviruses (SaVs) are responsible for acute gastroenteritis in humans, especially children and the elderly. In Brazil, data on SaVs infections are very limited, especially in Northern Brazil. Here, we investigated the occurrence of SaVs in samples from hospitalized children under ten years old that presented acute gastroenteritis. Positive samples were genotyped and phylogenetic analysis was performed using prototype strains sequences obtained from GenBank database. In total, 156 fecal samples were screened by RT-PCR for SaVs. A positivity rate of 3.8% (6/156) was found in children under three years of age. Four genotypes were detected: GI.I, GI.2 and GII.2?-GII.4?/GII.4, suggesting a possible inter-genotypes recombination. Most infections (83.3%) occurred between August and September. The positivity was similar to that found in other countries and genotyping demonstrated the presence of distinct genotypes. To our knowledge, this is the first study reporting the circulation of SaVs in Manaus, state of Amazonas, Amazon region, Brazil
    corecore