37 research outputs found

    Epidemiology of Invasive Fungal Infections in Latin America

    Get PDF
    The pathogenic role of invasive fungal infections (IFIs) has increased during the past two decades in Latin America and worldwide, and the number of patients at risk has risen dramatically. Working habits and leisure activities have also been a focus of attention by public health officials, as endemic mycoses have provoked a number of outbreaks. An extensive search of medical literature from Latin America suggests that the incidence of IFIs from both endemic and opportunistic fungi has increased. The increase in endemic mycoses is probably related to population changes (migration, tourism, and increased population growth), whereas the increase in opportunistic mycoses may be associated with the greater number of people at risk. In both cases, the early and appropriate use of diagnostic procedures has improved diagnosis and outcome

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Sporadic pituitary adenomas: the role of germline mutations and recommendations for genetic screening.

    No full text
    INTRODUCTION: Although most pituitary adenomas occur sporadically, these common tumors can present in a familial setting in approximately 5% of cases. Germline mutations in several genes with autosomal dominant (AIP, MEN1, CDKN1B, PRKAR1A, SDHx) or X-linked dominant (GPR101) inheritance are causative of familial pituitary adenomas. Due to variable disease penetrance and occurrence of de novo mutations, some patients harboring germline mutations have no family history of pituitary adenomas (simplex cases). Areas covered: We summarize the recent findings on the role of germline mutations associated with familial pituitary adenomas in patients with sporadic clinical presentation. Expert commentary: Up to 12% of patients with young onset pituitary adenomas (age at diagnosis/onset ≤30 years) and up to 25% of simplex patients with gigantism carry mutations in the AIP gene, while most cases of X-linked acrogigantism (XLAG) due to GPR101 duplication are simplex female patients with very early disease onset (<5 years). With regard to the syndromes of multiple endocrine neoplasia (MEN), MEN1 mutations can be identified in a significant proportion of patients with childhood onset prolactinomas. Somatotroph and lactotroph adenomas are the most common pituitary adenomas associated with germline predisposing mutations. Genetic screening should be considered in patients with young onset pituitary adenomas

    Sequence analysis of the catalytic subunit of PKA in somatotroph adenomas.

    No full text
    OBJECTIVE: The pathogenetic mechanisms of sporadic somatotroph adenomas are not well understood, but derangements of the cAMP pathway have been implicated. Recent studies have identified L206R mutations in the alpha catalytic subunit of protein kinase A (PRKACA) in cortisol-producing adrenocortical adenomas and amplification of the beta catalytic subunit of protein kinase A PRKACB in acromegaly associated with Carney complex. Given that both adrenocortical adenomas and somatotroph adenomas are known to be reliant on the cAMP signalling pathway, we sought to determine the relevance of the L206R mutation in both PRKACA and PRKACB for the pathogenesis of sporadic somatotroph adenomas. DESIGN: Somatotroph adenoma specimens, both frozen and formalin-fixed, from patients who underwent surgery for their acromegaly between 1995 and 2012, were used in the study. METHODS: The DNA sequence at codon 206 of PRKACA and PRKACB was determined by PCR amplification and sequencing. The results were compared with patient characteristics, the mutational status of the GNAS complex locus and the tumour granulation pattern. RESULTS: No mutations at codon 206 of PRKACA or PRKACB were found in a total of 92 specimens, comprising both WT and mutant GNAS cases, and densely, sparsely and mixed granulation patterns. CONCLUSIONS: It is unlikely that mutation at this locus is involved in the pathogenesis of sporadic somatotroph adenoma; however, gene amplification or mutations at other loci or in other components of the cAMP signalling pathway, while unlikely, cannot be ruled out

    Germline or somatic GPR101 duplication leads to X-linked acrogigantism:a clinico-pathological and genetic study

    Get PDF
    Non-syndromic pituitary gigantism can result from AIP mutations or the recently identified Xq26.3 microduplication causing X-linked acrogigantism (XLAG). Within Xq26.3, GPR101 is believed to be the causative gene, and the c.924G > C (p.E308D) variant in this orphan G protein-coupled receptor has been suggested to play a role in the pathogenesis of acromegaly. We studied 153 patients (58 females and 95 males) with pituitary gigantism. AIP mutation-negative cases were screened for GPR101 duplication through copy number variation droplet digital PCR and high-density aCGH. The genetic, clinical and histopathological features of XLAG patients were studied in detail. 395 peripheral blood and 193 pituitary tumor DNA samples from acromegaly patients were tested for GPR101 variants. We identified 12 patients (10 females and 2 males; 7.8 %) with XLAG. In one subject, the duplicated region only contained GPR101, but not the other three genes in found to be duplicated in the previously reported patients, defining a new smallest region of overlap of duplications. While females presented with germline mutations, the two male patients harbored the mutation in a mosaic state. Nine patients had pituitary adenomas, while three had hyperplasia. The comparison of the features of XLAG, AIP-positive and GPR101&AIP-negative patients revealed significant differences in sex distribution, age at onset, height, prolactin co-secretion and histological features. The pathological features of XLAG-related adenomas were remarkably similar. These tumors had a sinusoidal and lobular architecture. Sparsely and densely granulated somatotrophs were admixed with lactotrophs; follicle-like structures and calcifications were commonly observed. Patients with sporadic of familial acromegaly did not have an increased prevalence of the c.924G > C (p.E308D) GPR101 variant compared to public databases. In conclusion, XLAG can result from germline or somatic duplication of GPR101. Duplication of GPR101 alone is sufficient for the development of XLAG, implicating it as the causative gene within the Xq26.3 region. The pathological features of XLAG-associated pituitary adenomas are typical and, together with the clinical phenotype, should prompt genetic testing. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-016-0328-1) contains supplementary material, which is available to authorized users

    The genetic background of acromegaly.

    Get PDF
    Acromegaly is caused by a somatotropinoma in the vast majority of the cases. These are monoclonal tumors that can occur sporadically or rarely in a familial setting. In the last few years, novel familial syndromes have been described and recent studies explored the landscape of somatic mutations in sporadic somatotropinomas. This short review concentrates on the current knowledge of the genetic basis of both familial and sporadic acromegaly
    corecore