20,124 research outputs found

    A Wilson-Yukawa model with a chiral spectrum in 2D

    Get PDF
    We summarize our recent study of the fermion spectrum in a fermion-scalar 2D model with a chiral U(1)LĂ—U(1)RU(1)_L \times U(1)_R global symmetry. This model is obtained from a two-cutoff lattice formulation of a 2D U(1) chiral gauge theory, in the limit of zero gauge coupling. The massless fermion spectrum found deep in the vortex phase is undoubled and chiral.Comment: 3 pages, LaTeX, uses espcrc2.sty. To appear in proceedings of Lattice 97, Edinbugh, Scotlan

    The role of excitons and trions on electron spin polarization in quantum wells

    Full text link
    We have studied the time evolution of the electron spin polarization under continuous photoexcitation in remotely n-doped semiconductor quantum wells. The doped region allows us to get the necessary excess of free electrons to form trions. We have considered electron resonant photoexcitation at free, exciton and trion electron energy levels. Also, we have studied the relative effect of photoexcitation energy density and doping concentration. In order to obtain the two-dimensional density evolution of the different species, we have performed dynamic calculations through the matrix density formalism. Our results indicate that photoexcitation of free electron level leads to a higher spin polarization. Also, we have found that increasing the photoexcitation energy or diminishing the doping enhances spin polarization.Comment: 30 pages, 11 figures, 1 tabl

    Interpolation of Non-abelian Lattice Gauge Fields

    Get PDF
    We propose a method for interpolating non-abelian lattice gauge fields to the continuum, or to a finer lattice, which satisfies the properties of (i) transverse continuity, (ii) (lattice) rotation and translation covariance, (iii) gauge covariance, (iv) locality. These are the properties required for use in our earlier proposal for non-perturbative formulation and simulation of chiral gauge theories.Comment: A few typos corrected, a reference and a clarifying comment added. To appear in Nuclear Physics B. 16 pages, LateX, 1 figure. This interpolation scheme is intended for use in our formulation of lattice chiral gauge theory, Nucl. Phys. B455 (1990) 287, hep-ph/950633

    The information content of regional employment data for forecasting aggregate conditions

    Get PDF
    We consider whether disaggregated data enhances the efficiency of aggregate employment forecasts. We find that incorporating spatial interaction into a disaggregated forecasting model lowers the out-of-sample mean-squared-error from a univariate aggregate model by 70 percent at a two-year horizon.Econometrics ; Forecasting

    Guaranteed emergence of genuine entanglement in 3-qubit evolving systems

    Full text link
    Multipartite entanglement has been shown to be of particular relevance for a better understanding and exploitation of the dynamics and flow of entanglement in multiparty systems. This calls for analysis aimed at identifying the appropriate processes that guarantee the emergence of multipartite entanglement in a wide range of scenarios. Here we carry on such analysis considering a system of two initially entangled qubits, one of which is let to interact with a third qubit according to an arbitrary unitary evolution. We establish necessary and sufficient conditions on the corresponding Kraus operators, to discern whether the evolved state pertains to either one of the classes of 3-qubit pure states that exhibit some kind of entanglement, namely biseparable, W-, and GHZ- genuine entangled classes. Our results provide a classification of the Kraus operators according to their capacity of producing 3-qubit entanglement, and pave the way for extending the analysis to larger systems and determining the particular interactions that must be implemented in order to create, enhance and distribute entanglement in a specific manner.Comment: Two new subsections included. Accepted for publication in The European Physical Journal

    Coherent XUV generation driven by sharp metal tips photoemission

    Full text link
    It was already experimentally demonstrated that high-energy electrons can be generated using metal nanotips as active media. In addition, it has been theoretically proven that the high-energy tail of the photoemitted electrons is intrinsically linked to the recollision phenomenon. Through this recollision process it is also possible to convert the energy gained by the laser-emitted electron in the continuum in a coherent XUV photon. It means the emission of harmonic radiation appears to be feasible, although it has not been experimentally demonstrated hitherto till now. In this paper, we employ a quantum mechanical approach to model the electron dipole moment including both the laser experimental conditions and the bulk matter properties and predict is possible to generate coherent UV and XUV radiation using metal nanotips as sources. Our quantum mechanical results are fully supported by their classical counterparts.Comment: arXiv admin note: substantial text overlap with arXiv:1309.034
    • …
    corecore