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We summarize our recent study [1] of the fermion spectrum in a fermion-scalar 2D model with a chiral U(1)L�

U(1)R global symmetry. This model is obtained from a two-cuto� formulation of a 2D U(1) chiral gauge theory,

in the limit of zero gauge coupling. The massless fermion spectrum found deep in the vortex phase is undoubled

and chiral.

1. Introduction

The purpose of this study is to perform a non-

trivial test of the lattice formulation of chiral

gauge theories proposed in [2]. The main idea in

this proposal is to reduce the unavoidable break-

ing of chiral (gauge) symmetry, by means of a

regulator which separates the scale of the fermion

cuto� (where chirally breaking interactions be-

come relevant) from the boson cuto� [3,2]. In

practice, this is achieved [2] by coupling lattice

fermions on a lattice of spacing f to gauge link

variables, that are constructed by an appropri-

ate smooth and gauge-invariant interpolation of

gauge con�gurations generated on a coarser lat-

tice of spacing b. As long as the interpolation

is smooth, the Fourier modes of the interpolated

�eld are e�ectively cut o� at the scale 1=b� 1=f .
Doublers are given a mass by introducing a free

Laplacian Wilson term. In the absence of gauge

anomalies, the breaking of gauge invariance is

suppressed by powers of the ratio of the cut-

o� scales to all orders in the gauge coupling [2].

However, at any �nite lattice spacing, there is a

residual breaking of the gauge symmetry and it

is non-trivial to ensure that the continuum limit

of such a theory has the right degrees of free-

dom. In order to address this question, it is conve-

nient to consider the equivalent \higgs" picture in

which gauge invariance is exact but there are ex-

tra charged scalars, which correspond to the pure

gauge degrees of freedom [4]. An old and sim-

ple argument by the authors of [4] suggests that

a mild breaking of gauge invariance (i.e. gauge

breaking interactions are characterized by some

small coupling �) in a gauge theory is irrelevant

at long distances. Or in other words, the the-

ory is in the same universality class as the pure

gauge theory. The reason is that, for arbitrarily

small �, the correlation length of the scalar �elds

(�) can be arbitrarily small. If it is much smaller

than the correlation length of the gauge-invariant

degrees of freedom, the scalars can be integrated

out, resulting in a local (within distances of O(�))
and gauge-invariant theory. In the case of chiral

gauge theories, the gauge breaking interactions

come from the fermionic action. The \higgs" pic-

ture of the two-cuto� formulation of [2] is,

Z =

Z
Lb

D
DU e�Sg[U ] e�[u
![U ]] e���G[u![U ]]� ; (1)

where the u�[U ] and ! = F [
; U ] �elds are the in-
terpolations to the f -lattice of the b-lattice �elds
U� and 
 respectively. It is easy to show, using

the properties of the interpolation [1], that this

action is invariant under b-lattice gauge transfor-
mations �, U� ! U�

� , u� ! u�� and ! ! !�y,
where � � F [�; U ]. In order to ensure that the

continuum limit of (1) is a chiral gauge theory, it

is necessary that the scalars decouple in this limit.

For this, it is su�cient that the interactions of the

scalars induced by �[u!] are small in the sense of

[4]. That this is the case for an anomaly free the-

ory in the two-cuto� formulation was shown in
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[2], with � = O(f=b)2. Thus, for small enough

f=b, the 
 �elds should decouple. Besides, one

should also make sure that the fermion spectrum

is the correct one, after the 
 �elds are integrated

out. In [5], it has been shown that, in the one-

cuto� version of (1) (i.e., f = b and ! = 
 and

u� = U�), the 
 integration cancels the e�ects

of the Wilson term and there is doubling. Al-

though, the argument of [5] is not applicable for

f=b 6= 1, it is important to study the fermion

spectrum of (1), since the scalar-fermion dynam-

ics is non-peturbative. If there was a doubling

problem, this could be detected through the ef-

fective action,

e�
eff [U ] �

Z
Lb

D
 e�[u
![U ]]; (2)

or/and the fermion propagator,

Geff [U ] =

Z
Lb

D
 e�[u
![U ]] G[u![U ]]: (3)

In this work [1], we are concerned with the

fermion propagator. We have computed (3) in the

simplest non-trivial model, which is a U(1) chiral

theory in 2D, in the quenched approximation, and

in the global limit (i.e. the gauge coupling is set

to zero). In this limit, we should �nd free, mass-

less and undoubled fermions with chiral quantum

numbers under the residual global symmetry, if

(1) is to describe a chiral gauge theory.

2. Fermion Spectrum

We refer the reader to [1] for details about the

two-cuto� formulation of this model. The propa-

gator is given by G[u![U ]] � (D̂)�1, with

�	D̂	 � �	[

�

2
((D+

� +D�
� )L+ (@+� + @�� )R)

+y(!yR+ !L)�
r

2
(!y@+� @

�
� R+ @+� @

�
� !L)]	; (4)

where the covariant and normal derivatives are

given by D+
�	(x) = u�(x)	(x + �̂) � 	(x),

D�
�	(x) = 	(x) � uy�(x � �̂)	(x � �̂), @+� =

D+
� ju=1 and @�� = D�

� ju=1. L;R are the left

and right chirality projectors. In the global limit,

u = 1 in the previous formulae and the ! �elds

depend only on 
 (the detailed formulae can be

found in the appendix of [1]). In this limit, the ac-

tion (4) has a global U(1)R�U(1)L. The correct
spectrum should consist of two undoubled mass-

less fermions with charges (qR; qL) = (0; 1); (1; 0).
The fermionic action (4) is a two-cuto� version

of the action studied in the context of Wilson-

Yukawa (WY) models in [6]1. In those studies,

two phases were found on the plane (y, r), in the

vortex phase of the scalar dynamics. A strong

Yukawa phase for dr + y � 1 (d is the dimension

of space-time), where, due to the strong fermion-

scalar coupling, the so-called neutral composite

Dirac �eld 	(n) � !	L + 	R forms and gets a

mass. The resummation of the �rst order cor-

rections in the strong coupling expansion gives

m(n) � z�1, where z2 �< Re[!(x)!y(x + �̂)] >
is a chirally-invariant condensate which does not

vanish in the vortex phase. The charged fermion

	(c) � 	L+!y	R is a two particle state, !	(n),

and no other fundamental fermion with U(1)L
charge was found in the spectrum. For perturba-

tive Yukawa couplings (dr + y � 1), on the other

hand, all the fermion masses were found to be

� v �< ! >, which vanish in the vortex phase, so
doublers were present. Neither the strong nor the

weak phase could then give rise to a chiral gauge

theory in these models. On the other hand, in

[1], we have found that for f=b << 1 a new truly

chiral phase exists for large r and small y.
For each random 
 con�guration, the ! �elds

are obtained from the interpolation of [1], and the

operator D̂ is inverted using Conjugate Gradient

(CG). By choosing the appropiate sources, the

neutral and charged fermion propagators, S(n;c),

are also computed. An average is obtained from

a sample of 200-500 con�gurations, depending on

the value of y. The expectation value of !, v,
vanishes, as expected, since we are in the vortex

phase. However, the chirally symmetric conden-

sate z2 is non-zero. Since we are interested in de-

coupling the doublers, we have set r = 1 through

out and varied y. The spectrum obtained dif-

fers at large and small y. At large y, our results
are similar to those found in the strong phase of

WY models. In particular, the neutral propaga-

1
The vortex phase of the WY model of [6] is obtained by

setting f=b = 1, ! = 
 in (4) and adding a kinetic term

for 
 with strength � � �c.
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Figure 1. (S
(n)

RL;LR(qt))
�1, (S

(c)

RL;LR(qt))
�1,

(S
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RL;LR(qt))
�1, (S

(cd)

RL;LR(qt))
�1 for L

b b
f

= 88 and

y = 0:05.

tor is well described by the strong Yukawa cou-

pling expansion [1]. In contrast with WY models,

however, as y is decreased, the components S
(n)

RL

and S
(c)

LR become lighter and, at some �nite yc,
develop poles at zero momentum. Fig. 1 shows

the components (S
(n;c)

RL;LR)
�1 for qx = 0 as a func-

tion of the temporal momentum and (S
(nd;cd)

RL;LR)
�1

for qx = �, corresponding to the spatial dou-

blers. The components describing the propaga-

tion of 	
(n)

R = 	R and 	
(c)

L = 	L have simple

poles at qt = 0; qx = 0 and no other poles in

the Brillouin zone. These are the two expected

massless fermions with (qR; qL) = (1; 0); (0; 1).
The other components of the neutral and charged

propagators, S
(n)

LR, S
(c)

RL, have no poles in the Bril-

louin zone. At small momemtum they behave as

the two particle states !	L and !y	R respec-

tively. At large momenta, on the other hand,

the neutral �eld behaves as a massive Dirac �eld,

in agreement with the strong coupling expansion

[1]. This can be seen in Fig.1 from the behaviour

of the spatial doublers or from the behaviour of

S(n) near qt = �. In summary, for y � yc and

r = 1, the massless fermion spectrum is undou-

bled and chiral as expected. Naive power count-

ing qualitatively explains this new chiral phase.

The couplings of the light modes and the scalars

are suppressed, either by y or by f=b dr, so for

small enough f=b and y, at �xed r, the behaviour
of propagators near zero momemtum should be

as in the weak phase. On the other hand, the

coupling of the doublers to the scalars is mainly

controlled by dr, so the propagators near the dou-
bler momenta behave as in the strong phase, for

dr � 1.

There is some numerical evidence for the naive

guess yc � f=b, coming from the position of the

maximum of the number of CG iterations in the

fermion matrix inversion [1]. We have not ex-

plored the boundaries of the chiral phase as a

function of r. But clearly at small dr � 1 we

should get back to the perturbative regime, while

for large dr � b=f , the chiral phase should be lost
because the coupling of the light modes to the

scalars becomes strong. This also suggests what

happens when f=b! 1. Since the chiral phase is

expected to exist in some band 0 < y < yc and
d�1 < r < d�1b=f , it gets squeezed to zero as

f=b ! 1. Unfortunately, this also implies that

there is no simple analytical expansion to study

this phase, since r cannot be treated neither as

small nor as large.
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