1,031 research outputs found
A toolkit of dilemmas: Beyond debiasing and fairness formulas for responsible AI/ML
Approaches to fair and ethical AI have recently fell under the scrutiny of
the emerging, chiefly qualitative, field of critical data studies, placing
emphasis on the lack of sensitivity to context and complex social phenomena of
such interventions. We employ some of these lessons to introduce a tripartite
decision-making toolkit, informed by dilemmas encountered in the pursuit of
responsible AI/ML. These are: (a) the opportunity dilemma between the
availability of data shaping problem statements vs problem statements shaping
data; (b) the trade-off between scalability and contextualizability (too much
data versus too specific data); and (c) the epistemic positioning between the
pragmatic technical objectivism and the reflexive relativism in acknowledging
the social. This paper advocates for a situated reasoning and creative
engagement with the dilemmas surrounding responsible algorithmic/data-driven
systems, and going beyond the formulaic bias elimination and ethics
operationalization narratives found in the fair-AI literature.Comment: 4 pages, 1 table. Accepted in IEEE International Symposium on
Technology and Society 202
Distributed Infrastructuring and Innovation: an ethnographic enquiry into collaborative modes of work in an internet of things ecosystem
Emerging low-power wireless networks are being used for a range of data collection systems such as asset tracking, environmental monitoring, smart agriculture and smart city facilities. The relatively low costs of hardware components, modular network architectures and open standards are allowing a diversity of new actors to engage with the construction of ‘internet of things’ (IoT) networks and applications. Various branches of research within management studies, critical theory, design theory, feminism and science and technology studies (STS) have explored collaborative modes of technology development among heterogeneous groups of actors and addressed questions of how and why users become involved in technology development. There is however scant empirical and theoretical work on the involvement of ‘users’ and other non-conventional actors in contemporary data-oriented infrastructures such as the IoT. Conjointly, most policy roadmaps concerning the rise of pervasive data networks rely primarily on industry-oriented analyses and quantitative forecasts and hence remain blind to the involvement of non-corporate actors in the shaping of technological futures. Building on an STS-inflected framework, this study contributes to bridging this gap with a micro-level enquiry into collaborative work practices in the realm of the IoT.
This thesis explores the case of The Things Network, an initiative with the mission to build low-power wireless networks in a decentralised fashion with a strong reliance on geographically dispersed contributors. The initiative is far removed from traditional top-down infrastructure implementation strategies and faces a range of ambivalences related to organisation, growth and sustainability. The study is concerned with the questions of what types of work, social organisations and artefacts are subsumed in the emerging ecosystem? why/how contributors organise and operate local networks? whether and how control is exerted by the project owners? and how the uneven actions of users and other non-conventional actors are implicated in the generation of technical improvements and outcomes? The methodology comprised a multi-site ethnographic exploration over two and a half years with the practitioners contributing variously to the construction of data networks and the development of IoT solutions within the initiative.
An ecological analysis is developed, drawing on theories and concepts from infrastructure studies and the social shaping of technology framework. The evolution of the initiative is traced throughout the stages of inception, early scaling up and global expansion. Through casting low-power networks as ‘data infrastructure’, the analysis foregrounds the challenges and dilemmas associated with scaling up in the context of decentralisation. The concept of ‘distributed infrastructuring’ is proposed as a means to capture the orchestration of the piecemeal work of disparate and dispersed actors operating autonomously with a common network architecture. The findings suggest that this mode of infrastructuring is symptomatic of an industry trend towards an increasing fragmentation and distribution of professional development activities among a range of actors. We conclude that policy and practice would benefit from a nuanced recognition of the diversity of contributions, positionalities and preferences in the broad landscape of data-driven technologies
Key Challenges and Opportunities for Cloud Technology in Health Care:Semistructured Interview Study
BACKGROUND: The use of cloud computing (involving storage and processing of data on the internet) in health care has increasingly been highlighted as having great potential in facilitating data-driven innovations. Although some provider organizations are reaping the benefits of using cloud providers to store and process their data, others are lagging behind. OBJECTIVE: We aim to explore the existing challenges and barriers to the use of cloud computing in health care settings and investigate how perceived risks can be addressed. METHODS: We conducted a qualitative case study of cloud computing in health care settings, interviewing a range of individuals with perspectives on supply, implementation, adoption, and integration of cloud technology. Data were collected through a series of in-depth semistructured interviews exploring current applications, implementation approaches, challenges encountered, and visions for the future. The interviews were transcribed and thematically analyzed using NVivo 12 (QSR International). We coded the data based on a sociotechnical coding framework developed in related work. RESULTS: We interviewed 23 individuals between September 2020 and November 2020, including professionals working across major cloud providers, health care provider organizations, innovators, small and medium-sized software vendors, and academic institutions. The participants were united by a common vision of a cloud-enabled ecosystem of applications and by drivers surrounding data-driven innovation. The identified barriers to progress included the cost of data migration and skill gaps to implement cloud technologies within provider organizations, the cultural shift required to move to externally hosted services, a lack of user pull as many benefits were not visible to those providing frontline care, and a lack of interoperability standards and central regulations. CONCLUSIONS: Implementations need to be viewed as a digitally enabled transformation of services, driven by skill development, organizational change management, and user engagement, to facilitate the implementation and exploitation of cloud-based infrastructures and to maximize returns on investment
Addressing contingency in algorithmic (mis)information classification: Toward a responsible machine learning agenda
Machine learning (ML) enabled classification models are becoming increasingly
popular for tackling the sheer volume and speed of online misinformation and
other content that could be identified as harmful. In building these models,
data scientists need to take a stance on the legitimacy, authoritativeness and
objectivity of the sources of ``truth" used for model training and testing.
This has political, ethical and epistemic implications which are rarely
addressed in technical papers. Despite (and due to) their reported high
accuracy and performance, ML-driven moderation systems have the potential to
shape online public debate and create downstream negative impacts such as undue
censorship and the reinforcing of false beliefs. Using collaborative
ethnography and theoretical insights from social studies of science and
expertise, we offer a critical analysis of the process of building ML models
for (mis)information classification: we identify a series of algorithmic
contingencies--key moments during model development that could lead to
different future outcomes, uncertainty and harmful effects as these tools are
deployed by social media platforms. We conclude by offering a tentative path
toward reflexive and responsible development of ML tools for moderating
misinformation and other harmful content online.Comment: Andr\'es Dom\'inguez Hern\'andez, Richard Owen, Dan Saattrup Nielsen
and Ryan McConville. 2023. Addressing contingency in algorithmic
(mis)information classification: Toward a responsible machine learning
agenda. Accepted in 2023 ACM Conference on Fairness, Accountability, and
Transparency (FAccT '23), June 12-15, 2023, Chicago, United States of
America. ACM, New York, NY, USA, 16 page
Modelo computacional para la formación de clases de equivalencia
A computational model of neuronal net closely related with the formation of equivalence classes is developed. First the formal pattern of the neuronal net is presented and then its operation and its direct relationship with the phenomenon of the formation of the equivalence classes and with the derived relationships are explained. Later on, the validation of the pattern is described carrying out several simulations allowing verification of the pattern so it is able to generate relationships not explicitly trained, these results being adjusted to the basic results of this investigation line. These simulations were carried out using a training of classic conditioning and a test phase by means of conditional discriminations
Compromiso protector del omento mayor en una ruptura uterina asintomática en una perra : reporte de un caso
ABSTRACT: The great omentum plays an important role in protecting the peritoneal cavity from bacteria and contaminating material and providing the peritoneum with leukocytes from the omental milky spots (OMS). However, there are no reports on the existence of OMS in dogs. In this report an unusual case of asymptomatic uterine rupture (UR) is described in a 16 month old pointer bitch that was admitted at the CES University Veterinary Clinic in Medellin (Colombia) for elective neutering. In the abdominal surgical plane, the great omentum was found sequestering abundant macerated fetal debris and uterine content released near the ruptured uterine wall. A severe congestive and brown-like appearance of peritoneum suggesting a protective inflammatory process was observed. All uterine contents, uterus and compromised great omentum were completely removed. The dog recovered satisfactorily with no clinical complications after a long term postsurgical period. Additionally we discuss the existence of OMS in the canine omentum.RESUMEN: El omento mayor juega un papel importante en la protección de la cavidad peritoneal contra infecciones bacterianas y material contaminante proporcionando leucocitos al peritoneo producidos en los puntos lechosos del omento (OMS). Sin embargo, en la literatura científica no hay reportes sobre la existencia de los OMS en caninos. En este reporte es descrito un caso poco usual de ruptura uterina (UR) asintomática en una perra de la raza pointer de 16 meses de edad, que fue atendida en la consulta del Centro de Medicina Veterinaria y Zootecnia de la Universidad CES en Medellín (Colombia) para ser sometida a ovariohisterectomía electiva. Una vez fue alcanzado el plano quirúrgico abdominal el omento mayor fue encontrado recubriendo una cantidad abundante de restos fetales macerados y otro contenido uterino que había sido liberado a la cavidad peritoneal cerca al sitio de ruptura de la pared uterina. El omento presentaba un aspecto de congestión severa de color parduzco, que sugería una reacción inflamatoria intensa. Todo el útero y el contenido revertido a la cavidad fueron removidos quirúrgicamente, como también el omento mayor. La perra se recuperó de manera satisfactoria sin complicaciones clínicas después de un largo periodo posterior a la cirugía. En la discusión es planteada la existencia de los OMS en el omento canino
Estrategias Metodológicas Para La Enseñanza De La Destreza De Hablar En Ingles En Los Décimos Años De Educación Básica Del Colegio Nacional Técnico “Víctor Manuel Guzmán “
Aprender bien un idioma requiere mucha atención, constancia, trabajo y sobre todo, tiempo e interés, para poder comunicarse con otras personas en su mismo idioma compensa siempre el esfuerzo realizado. Cada vez la sociedad en general reconoce la importancia fundamental de este idioma universal de comunicación por medio del cual se mueve todo tipo de información actualizada dentro de los campos científico, financiero, técnico y profesional.La presente Investigación se llevo a cabo en el Colegio Nacional Técnico “ Víctor Manuel Guzmán “, con el objetivo de identificar las estrategias metodológicas para la enseñanza de las destrezas de hablar en Inglés en los Décimos Años de Educación Básica. El diseño metodológico que se escogió es una investigación bibliográfica y de campo de tipo descriptivo, apoyada en el método analítico–sintético, inductivo–deductivo e histórico-lógico, parte de la existencia del problema de ¿Cuáles son las estrategias metodológicas que utilizan los docentes de Inglés para desarrollar la destreza de hablar en los estudiantes de los Décimos Años de Educación Básica del Colegio Nacional Técnico “Víctor Manuel Guzmán” año lectivo 2009-2010? Este trabajo aborda algunas de las fuentes teóricas de enseñanza aprendizaje más importantes y de aplicación efectiva en el campo educativo como el Constructivismo y el Aprendizaje Significativo, puntualiza las clases de aprendizajes, diseño y planificación aquí se exponen también algunos conceptos más importantes en la enseñanza del idioma Inglés, el desarrollo de la destreza de hablar es el eje central de este trabajo investigativo, por ello hay ciertos temas que muestran cómo se produce el desarrollo de esta destreza, las estrategias metodológicas y técnicas que se deben utilizar, la metodología que son factores fundamentales que se conjugan para fortalecer la práctica y aplicación de ésta destreza comunicativa. La información que se obtuvo para la realización de esta investigación fue recopilada por medio de una serie de fuentes válidas para luego ser analizadas, corroborándose el limitado desarrollo de la destreza de hablar y como alternativa de solución se presenta Una guía con estrategias para desarrollar la destreza de hablar en Inglés en los Décimos Años de Educación Básica. Seguidamente se incluyen las conclusiones con sus respectivas recomendaciones que surgen de la investigación realizada. Finalmente se presenta la Propuesta realizada en su totalidad, para de esta manera contribuir con un aporte significativo para mejorar la calidad de educación en el citado Establecimiento Educativo
Non‐invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements
[EN] Grafting involves a sequence of modifications that may vary according to genotypes, grafting techniques and growing conditions. This process is often monitored using destructive methods, precluding the possibility of monitoring the entire process in the same grafted plant. The aim of this study was to test the effectiveness of two non-invasive methods—thermographic inference of transpiration and determination of chlorophyll quantum yields—for monitoring graft dynamics in tomato (Solanum lycopersicum L.) autografts and to compare the results with other reliable measures: mechanical resistance parameters and xylem water potential. The mechanical resistance of grafted plants steadily increased from 6 days after grafting (DAG), 4.90 ± 0.57 N/mm, to reach values similar to non-grafted plants at 16 DAG, 8.40 ± 1.78 N/mm. Water potential showed an early decrease (from −0.34 ± 0.16 MPa in non-grafted plants to −0.88 ± 0.07 MPa at 2 DAG), recovering at 4 DAG to reach pre-grafting values at 12–16 DAG. Thermographic inference of transpiration dynamics displayed comparable changes. Monitoring maximum and effective quantum yield in functional grafts showed a comparable pattern: an initial decline, followed by recovery from 6 DAG onwards. Correlation analyses revealed a significant correlation between variation in temperature (thermographic monitoring of transpiration), water potential (r = 0.87; p = 0.02) and maximum tensile force (r = 0.75; p = 0.05). Additionally, we found a significant correlation between maximum quantum yield and some mechanical parameters. In conclusion, thermography monitoring, and to a lesser extent maximum quantum yield measurements, accurately depict changes in key parameters in grafted plants and serve as potential timing indicators of graft regeneration, rendering them valuable tools for monitoring graft functionalitySIPublicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCL
- …