1,162 research outputs found

    W(h)ither Fossils? Studying Morphological Character Evolution in the Age of Molecular Sequences

    Get PDF
    A major challenge in the post-genomics era will be to integrate molecular sequence data from extant organisms with morphological data from fossil and extant taxa into a single, coherent picture of phylogenetic relationships; only then will these phylogenetic hypotheses be effectively applied to the study of morphological character evolution. At least two analytical approaches to solving this problem have been utilized: (1) simultaneous analysis of molecular sequence and morphological data with fossil taxa included as terminals in the analysis, and (2) the molecular scaffold approach, in which morphological data are analyzed over a molecular backbone (with constraints that force extant taxa into positions suggested by sequence data). The perceived obstacles to including fossil taxa directly in simultaneous analyses of morphological and molecular sequence data with extant taxa include: (1) that fossil taxa are missing the molecular sequence portion of the character data; (2) that morphological characters might be misleading due to convergence; and (3) character weighting, specifically how and whether to weight characters in the morphological partition relative to characters in the molecular sequence data partition. The molecular scaffold has been put forward as a potential solution to at least some of these problems. Using examples of simultaneous analyses from the literature, as well as new analyses of previously published morphological and molecular sequence data matrices for extant and fossil Chiroptera (bats), we argue that the simultaneous analysis approach is superior to the molecular scaffold approach, specifically addressing the problems to which the molecular scaffold has been suggested as a solution. Finally, the application of phylogenetic hypotheses including fossil taxa (whatever their derivation) to the study of morphological character evolution is discussed, with special emphasis on scenarios in which fossil taxa are likely to be most enlightening: (1) in determining the sequence of character evolution; (2) in determining the timing of character evolution; and (3) in making inferences about the presence or absence of characteristics in fossil taxa that may not be directly observable in the fossil record. Published By: Missouri Botanical Garde

    COMPTEL solar flare observations

    Get PDF
    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties

    Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C58

    Get PDF
    PSR J0205+6449 is a young rotation-powered pulsar in SNR 3C 58. It is one of only three young (<10,000 year old) pulsars which are so far detected in the radio and the classical X-ray bands, as well as at hard X-rays above 20 keV and at high-energy (>100 MeV) γ\gamma-rays. The other two young pulsars are the Crab and PSR B1509-58. Our aim is to derive the timing and spectral characteristics of PSR J0205+6449 over the broad X-ray band from ~0.5 to ~270 keV. We used all publicly available RXTE observations of PSR J0205+6449 to first generate accurate ephemerides over the period September 30, 2000 - March 18, 2006. Next, phase-folding procedures yielded pulse profiles using data from RXTE PCA and HEXTE, and XMM-Newton EPIC PN. While our timing solutions are consistent with earlier results, our work shows sharper structures in the PCA X-ray profile. The X-ray pulse profile consists of two sharp pulses, separated in phase by 0.488(2), which can be described with 2 asymmetric Lorentzians, each with the rising wing steeper than the trailing wing, and full-width-half-maximum 1.41(5) ms and 2.35(22) ms, respectively. We find an indication for a flux increase by a factor ~2, about 3.5 sigma above the time-averaged value, for the second, weaker pulse during a two-week interval, while its pulse shape did not change. The spectrum of the pulsed X-ray emission is of non-thermal origin, exhibiting a power-law shape with photon index Gamma = 1.03(2) over the energy band ~0.5 to ~270 keV. In the energy band covered with the PCA (~3-30 keV) the spectra of the two pulses have the same photon index, namely, 1.04(3) and 1.10(8), respectively.Comment: 10 pages; 7 figures (2 in color), resubmitted to A&A, including referee comment
    corecore