28 research outputs found

    Pressure-dependence of arterial stiffness: potential clinical implications

    Get PDF
    Background: Arterial stiffness measures such as pulse wave velocity (PWV) have a known dependence on actual blood pressure, requiring consideration in cardiovascular risk assessment and management. Given the impact of ageing on arterial wall structure, the pressure-dependence of PWV may vary with age. Methods: Using a noninvasive model-based approach, combining carotid artery echo-tracking and tonometry waveforms, we obtained pressure-area curves in 23 hypertensive patients at baseline and after 3 months of antihypertensive treatment. We predicted the follow-up PWV decrease using modelled baseline curves and follow-up pressures. In addition, on the basis of these curves, we estimated PWV values for two age groups (mean ages 41 and 64 years) at predefined hypertensive (160/90 mmHg) and normotensive (120/80mmHg) pressure ranges. Results: Follow-up measurements showed a near 1 m/s decrease in carotid PWV when compared with baseline, which fully agreed with our model-prediction given the roughly 10mmHg decrease in diastolic pressure. The stiffness-blood pressure-age pattern was in close agreement with corresponding data from the 'Reference Values for Arterial Stiffness' study, linking the physical and empirical bases of our findings. Conclusion: Our study demonstrates that the innate pressure-dependence of arterial stiffness may have implications for the clinical use of arterial stiffness measurements, both in risk assessment and in treatment monitoring of individual patients. We propose a number of clinically feasible approaches to account for the blood pressure effect on PWV measurements

    Platform for Analysis and Labeling of Medical Time Series

    No full text
    Reliable and diverse labeled reference data are essential for the development of high-quality processing algorithms for medical signals, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Here, we present the Platform for Analysis and Labeling of Medical time Series (PALMS) designed in Python. Its graphical user interface (GUI) facilitates three main types of manual annotations—(1) fiducials, e.g., R-peaks of ECG; (2) events with an adjustable duration, e.g., arrhythmic episodes; and (3) signal quality, e.g., data parts corrupted by motion artifacts. All annotations can be attributed to the same signal simultaneously in an ergonomic and user-friendly manner. Configuration for different data and annotation types is straightforward and flexible in order to use a wide range of data sources and to address many different use cases. Above all, configuration of PALMS allows plugging-in existing algorithms to display outcomes of automated processing, such as automatic R-peak detection, and to manually correct them where needed. This enables fast annotation and can be used to further improve algorithms. The GUI is currently complemented by ECG and PPG algorithms that detect characteristic points with high accuracy. The ECG algorithm reached 99% on the MIT/BIH arrhythmia database. The PPG algorithm was validated on two public databases with an F1-score above 98%. The GUI and optional algorithms result in an advanced software tool that allows the creation of diverse reference sets for existing datasets

    Comparing Remote Speckle Plethysmography and Finger-Clip Photoplethysmography with Non-Invasive Finger Arterial Pressure Pulse Waves, Regarding Morphology and Arrival Time

    No full text
    Objective: The goal was to compare Speckle plethysmography (SPG) and Photoplethysmography (PPG) with non-invasive finger Arterial Pressure (fiAP) regarding Pulse Wave Morphology (PWM) and Pulse Arrival Time (PAT). Methods: Healthy volunteers (n = 8) were connected to a Non-Invasive Blood Pressure (NIBP) monitor providing fiAP pulse wave and PPG from a clinical transmission-mode SpO2 finger clip. Biopac recorded 3-lead ECG. A camera placed at a 25 cm distance recorded a video stream (100 fps) of a finger illuminated by a laser diode at 639 nm. A chest belt (Polar) monitored respiration. All signals were recorded simultaneously during episodes of spontaneous breathing and paced breathing. Analysis: Post-processing was performed in Matlab to obtain SPG and analyze the SPG, PPG and fiAP mean absolute deviations (MADs) on PWM, plus PAT modulation. Results: Across 2599 beats, the average fiAP MAD with PPG was 0.17 (0–1) and with SPG 0.09 (0–1). PAT derived from ECG–fiAP correlated as follows: 0.65 for ECG–SPG and 0.67 for ECG–PPG. Conclusion: Compared to the clinical NIBP monitor fiAP reference, PWM from an experimental camera-derived non-contact reflective-mode SPG setup resembled fiAP significantly better than PPG from a simultaneously recorded clinical transmission-mode finger clip. For PAT values, no significant difference was found between ECG–SPG and ECG–PPG compared to ECG–fiAP

    Pulse Arrival Time Segmentation Into Cardiac and Vascular Intervals - Implications for Pulse Wave Velocity and Blood Pressure Estimation

    No full text
    Objective: This study demonstrates a novel method for pulse arrival time (PAT) segmentation into cardiac isovolumic contraction (IVC) and vascular pulse transit time to approximate central pulse wave velocity (PWV). Methods: 10 subjects (38 +/- 10 years, 121 +/- 12 mmHg SBP) ranging from normotension to hypertension were repeatedly measured at rest and with induced changes in blood pressure (BP), and thus PWV. ECG was recorded simultaneously with ultrasound-based carotid distension waveforms, a photoplethysmography-based peripheral waveform, noninvasive continuous and intermittent cuff BP. Central PAT was segmented into cardiac and vascular time intervals using a fiducial point in the carotid distension waveform that reflects the IVC onset. Central and peripheral PWVs were computed from (segmented) intervals and estimated arterial path lengths. Correlations with Bramwell-Hill PWV, systolic and diastolic BP (SBP/DBP) were analyzed by linear regression. Results: Central PWV explained more than twice the variability (R-2) in Bramwell-Hill PWV compared to peripheral PWV (0.56 vs. 0.27). SBP estimated from central PWV undercuts the IEEE mean absolute deviation threshold of 5 mmHg, significantly lower than peripheral PWV or PAT (4.2 vs. 7.1 vs. 10.1 mmHg). Conclusion: Cardiac IVC onset signaled in carotid distension waveforms enables PAT segmentation to obtain unbiased vascular pulse transit time. Corresponding PWV estimates provide the basis for single-site assessment of central arterial stiffness, confirmed by significant correlations with Bramwell-Hill PWV and SBP. Significance: In a small-scale cohort, we present proof-of-concept for a novel method to estimate central PWV and BP, bearing potential to improve the practicality of cardiovascular risk assessment in clinical routines

    Modeling cardiac electromechanics and mechanoelectrical coupling in dyssynchronous and failing hearts : insight from adaptive computer models

    Get PDF
    Computer models have become more and more a research tool to obtain mechanistic insight in the effects of dyssynchrony and heart failure. Increasing computational power in combination with increasing amounts of experimental and clinical data enables the development of mathematical models that describe electrical and mechanical behavior of the heart. By combining models based on data at the molecular and cellular level with models that describe organ function, so-called multi-scale models are created that describe heart function at different length and time scales. In this review, we describe basic modules that can be identified in multi-scale models of cardiac electromechanics. These modules simulate ionic membrane currents, calcium handling, excitation–contraction coupling, action potential propagation, and cardiac mechanics and hemodynamics. In addition, we discuss adaptive modeling approaches that aim to address long-term effects of diseases and therapy on growth, changes in fiber orientation, ionic membrane currents, and calcium handling. Finally, we discuss the first developments in patient-specific modeling. While current models still have shortcomings, well-chosen applications show promising results on some ultimate goals: understanding mechanisms of dyssynchronous heart failure and tuning pacing strategy to a particular patient, even before starting the therapy

    Mechano-electrical coupling as framework for understanding functional remodeling during LBBB and CRT

    No full text
    It is not understood why, after onset of left bundle-branch block (LBBB), acute worsening of cardiac function is followed by a further gradual deterioration of function, whereas most adverse cardiac events lead to compensatory adaptations. We investigated whether mechano-electrical coupling (MEC) can explain long-term remodeling with LBBB and cardiac resynchronization therapy (CRT). To this purpose, we used an integrative modeling approach relating local ventricular electrophysiology, calcium handling, and excitation-contraction coupling to global cardiovascular mechanics and hemodynamics. Each ventricular wall was composed of multiple mechanically and electrically coupled myocardial segments. MEC was incorporated by allowing adaptation of L-type Ca2+ current aiming at minimal dispersion of local external work, an approach that we previously applied to replicate T-wave memory in a synchronous heart after a period of asynchronous activation. LBBB instantaneously decreased left-ventricular stroke work and increased end-diastolic volume. During sustained LBBB, MEC reduced intraventricular dispersion of mechanical workload and repolarization. However, MEC-induced reduction in contractility in late-activated regions was larger than the contractility increase in early-activated regions, resulting in further decrease of stroke work and increase of end-diastolic volume. Upon the start of CRT, stroke work increased despite a wider dispersion of mechanical workload. During sustained CRT, MEC-induced reduction in dispersion of workload and repolarization coincided with a further reduction in end-diastolic volume. In conclusion, MEC may represent a useful framework for better understanding the long-term changes in cardiac electrophysiology and contraction following LBBB as well as CRT
    corecore