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ABSTRACT  

Background: Arterial stiffness measures such as pulse wave velocity (PWV) have a 

known dependence on actual blood pressure, requiring consideration in 

cardiovascular risk assessment and management. Given the impact of ageing on 

arterial wall structure, the pressure-dependence of PWV may vary with age.  

Methods: Using a non-invasive model-based approach, combining carotid artery 

echo-tracking and tonometry waveforms, we obtained pressure-area curves in 23 

hypertensive patients at baseline and after three months of anti-hypertensive 

treatment. We predicted the follow-up PWV decrease using modelled baseline curves 

and follow-up pressures. In addition, based on these curves, we estimated PWV 

values for two age groups (mean ages 41 and 64 yrs) at predefined hypertensive 

(160/90 mmHg) and normotensive (120/80 mmHg) pressure ranges. 

Results: Follow-up measurements showed a near 1 m/s decrease in carotid PWV 

when compared to baseline, which fully agreed with our model-prediction given the 

roughly 10 mmHg decrease in diastolic pressure. The stiffness-blood pressure-age 

pattern was in close agreement with corresponding data from the "Reference Values 

for Arterial Stiffness' Collaboration" study, linking the physical and empirical bases of 

our findings. 

Conclusion: Our study demonstrates that the innate pressure-dependence of arterial 

stiffness may have implications for the clinical use of arterial stiffness measurements, 

both in risk assessment and in treatment monitoring of individual patients. We 

propose a number of clinically feasible approaches to account for the blood pressure 

effect on PWV measurements. 

Keywords: carotid artery, pulse wave velocity, hypertension, ultrasonography, 

remodelling   
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INTRODUCTION 

Beyond blood pressure (BP), arterial wall stiffness measurements have emerged as 

guidance to target arterial wall structure in anti-hypertensive treatment and vascular 

risk management [1-3]. Although the field is well aware of the fact that arterial wall 

stiffness is intrinsically pressure dependent [4, 5], a clinically applicable method to 

disentangle BP and arterial stiffness is currently lacking. As a consequence, the order 

of magnitude and relevance of the pressure-dependence of stiffness in the clinical 

context has not been established. 

We previously showed by combining carotid artery ultrasound and tonometry, that 

arterial stiffness, expressed in terms of pulse wave velocity (PWV), may vary about 

0.7 − 4.0 m/s within individuals due to the cyclic diastolic-systolic BP variation [6, 7]. 

These cyclic stiffness changes clearly do not reflect any change in structural wall 

properties (Fig. 1; along curve A), but do suggest that the contribution of actual BP to 

the stiffness measurement in clinical practice may be considerable. In this light, the 

fixed threshold of 10 m/s for increased arterial stiffness, as advocated in the 2013 

ESH/ESC guidelines [8], requires a critical approach in (individual) patient 

management.  

From a treatment perspective, the pharmacological modification of arterial wall 

structure has gained interest, with a particular focus on pressure-independent 

changes in PWV [9-11]. An exploratory review of the literature shows that significant 

differences in PWV between groups or changes with treatment are accompanied by 

significant BP changes [2, 7, 12]. Thus, the extent to which observed changes in 

stiffness concurrent with BP changes reflect structural alterations in the arterial wall 

remains to be established [9, 10, 13]. 

Next to BP, age is the other major factor influencing arterial stiffness, as established 

by robust meta-analyses [14, 15]. The structural alterations in the arterial wall related 

to ageing are well-known and clearly reflected by increased stiffness values found in 

older subjects [11, 16, 17]. We previously observed that the pressure-dependence 

itself may vary with age [7], which raises the question whether the BP effect on 

arterial stiffness measurements is as large in young subjects as in elderly (Fig. 1; 

compare curvature of curves A and B). 
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In the present study, we obtained more quantitative insight into the abovementioned 

aspects of the pressure-dependence of arterial stiffness. To this end, we conducted 

an observational study in a sample of hypertensive subjects consecutively attending 

our outpatient hypertension clinic. 

We obtained non-invasive data on the carotid artery pressure-area relationship at 

baseline and at 3-month follow-up (Fig. 2A). At baseline, anti-hypertensive 

medication was discontinued. Shortly after the baseline measurement, anti-

hypertensive medication was increased. At both visits, we calculated carotid pulse 

wave velocity (cPWV, Fig. 2A) using the Bramwell-Hill equation [18]. In addition, 

baseline measurements were also used to obtain a pressure-area (P-A) curve model. 

If it is assumed that the P-A curve does not change, follow-up cPWV can be 

predicted (cPWVpred) using the baseline P-A curve and follow-up blood pressures 

(Fig. 2A). The feasibility of this assumption was verified by comparing the measured 

change in cPWV (ΔcPWV) with the predicted change (ΔcPWVpred). 

In order to disentangle pressure and age effects on cPWV, we additionally calculated 

arterial stiffness at defined pressure levels for a young as well as an old subgroup of 

our population. We discuss our quantitative findings from a clinical perspective, 

focusing on their relevance in the cardiovascular risk management of individual 

patients.  
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METHODS 

Study population 

The study was approved by the ethical committee of Maastricht University and 

conducted in accordance with the Declaration of Helsinki (Seoul 2008). All subjects 

provided written informed consent prior to participation. Thirty consecutive subjects 

were recruited from patients referred to our outpatient hypertension clinic for a two-

day clinical assessment. Participants underwent extensive arterial function and 

hemodynamic measurements (detailed below) at inclusion and at three-months 

(3.0 ± 0.6 months) follow-up (Fig. 2A). Baseline characteristics and medication profile 

in units of daily defined dose (DDD, [22]) are shown in Table 1. After baseline 

measurements, blood pressure was managed according to European Society of 

Hypertension (ESH) guidelines [8], while treating physicians were blinded for 

(intermediate) study results. Seven subjects were excluded due to incomplete follow-

up data (𝑛 = 3 no show; 𝑛 = 2 missing carotid ultrasound) or inconsistent data quality 

(𝑛 = 2, see Discussion). Baseline and follow-up measurements obtained in 23 

patients are used in the present analyses (Fig. B). 

Measurements 

Arterial function measurements (total duration 30 − 45 min) were performed in a 

quiet, temperature-controlled room (22 °C) after a resting period of 15 min with 

subjects in supine position. Throughout the session four to eight repeated 

oscillometric BP readings were obtained at the left upper arm (Omron 705IT, Omron 

Healthcare Europe B.V., Hoofddorp, The Netherlands). Additionally, continuous 

pulsatile finger BP, heart rate (HR) and an estimated cardiac output (CO), were 

obtained from the right middle finger by the Peñáz method (Nexfin, BMEYE B.V., 

Amsterdam, The Netherlands) [19]. 

Left common carotid artery diameter waveforms were obtained using a 7.5 MHz 

vascular ultrasound scanner (MyLab70, Esaote Europe, Maastricht, the Netherlands) 

operated at high frame rate as previously described [20]. Diastolic diameter and 

distension values over 6 consecutive heartbeats and a real-time distension waveform 

display were used to judge quality of the recordings (RFQAS utility, Esaote Europe). 

Subsequently, left common carotid artery tonometric pressure waveforms were 
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obtained (Sphygmocor, AtCor Medical, Sydney, Australia). Raw carotid artery 

tonometry waveforms were used to obtain calibrated local left common carotid artery 

BP waveforms [21]. Signal processing was performed using proprietary MATLAB 

code (MATLAB R2013b, The MathWorks Inc, Natick, Massachusetts, USA). Carotid 

ultrasound and arterial tonometry measurements were obtained in triplet by a single 

experienced operator (JOR). Ambulatory (i.e. 24 h) BP was assessed from clinic 

assessment day one onto day two (Mobil-o-Graph, IEM, Stolberg, Germany). 

Data processing 

Waveform analysis and data processing 

To enable quantitative assessment of the curvilinearity of the carotid artery pressure-

area (P-A) relation at individual subject level, we followed procedures similar to those 

described previously [20]. Briefly, systolic (peak), dicrotic notch and diastolic 

(minimum) points were identified in the diameter (by manual cursor reading, using 

RFQAS) and pressure (automatic) waveforms. For diameter typically 9 − 12 and for 

pressure 18 − 30 heartbeats were included for each subject in each session.  

To suppress variability related to echo and tonometry tracking artefacts, we applied 

the following averaging schemes for processing the acquired diameters (𝐷). Diastolic 

diameter was averaged over acquired beats to obtain a recording average and 

subsequently over recordings to obtain a session average. Relative distensions (i.e. 

[𝐷systolic − 𝐷diastolic] 𝐷diastolic⁄ ) were averaged over beats and recordings, yielding a 

session average of relative distension. The session average of systolic diameter was 

then obtained by multiplying relative distension by the corresponding diastolic 

diameter and adding the diastolic diameter. Similarly, the relative distensions of the 

dicrotic notch point (i.e. [𝐷notch − 𝐷diastolic] [𝐷systolic − 𝐷diastolic]⁄ ) were averaged for 

further analysis, rather than absolute dicrotic notch values. Exactly the same scheme 

was applied for carotid systolic, notch and diastolic blood pressures. Median 

averaging was used throughout. 

Reproducibility 

Intra-session measurement variability was quantified as follows. Differences of the 

three (𝑚 = 3) recording averages with the session mean were calculated for the 
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entire study group (𝑛 = 23). The SD of these values from all subjects (𝑚 ∙ 𝑛 = 3 ∙

23 = 69) is a measure of intra-session variability. 

Carotid stiffness calculation 

Carotid artery cross-sectional areas were calculated at diastole (𝐴d), dicrotic notch 

(𝐴n) and systole (𝐴s) using 𝐴 = 𝜋 ∙ (𝐷 2⁄ )2. Local carotid PWVs (cPWV) were 

calculated using the Bramwell-Hill relationship [23]: 

 cPWV = √
1

ρ
∙

SBP−DBP

𝐴s−𝐴d
∙ 𝐴d  (1) 

with ρ = 1.050 kg L⁄  the blood mass density, and SBP and DBP the calibrated local 

systolic and diastolic carotid blood pressures, respectively.  

Pressure-area curve description 

In each individual and session, the three (diastolic, notch and systolic) P-A points 

obtained were used to fit an established mathematical description of the P-A relation, 

i.e. a single-exponential model [24]: 

 𝑃(𝐴) = DBP ∙ e
γ∙(

𝐴

𝐴d
−1)

  (2) 

𝛾 is obtained by minimizing the sum-of-squares of differences between measured 

and modelled notch and systolic pressures. The line is forced through the diastolic 

point. As a line with one free parameter (𝛾) is fitted through two points, the line will, in 

general, not pass exactly through the notch and systolic points.  

Model prediction of stiffness at follow-up 

Based on the above descriptive model (Equation 2) and baseline P-A data, we 

predicted cPWV at follow-up (cPWVpred), using BP at follow-up as input. This was 

done under the explicit assumption that between baseline and follow-up the P-A 

relationship had remained unaltered. To verify whether this assumption was valid, we 

calculated stiffness for a prescribed, normotensive BP level of 120/80 mmHg by 

using the modelled P-A curves from baseline and follow-up (cPWVmod120/80). 
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Stratification according to BP-lowering at follow-up 

To investigate whether measured changes in arterial stiffness were related to 

changes in BP observed in our study population, we stratified patients to a BP-

lowered group (𝑛 = 13) if the reduction in DBP at three-month follow-up was more 

than twice the intra-session SD (i.e. 7 mmHg) and to a BP-constant control group 

(𝑛 = 10) if the reduction was less than 7 mmHg (Fig. 2b). 

Stratification of BP-lowering group to age 

To identify age-related differences in hemodynamic and stiffness changes, we 

divided the BP-lowered group into a young group (< 50 yrs, 𝑛 = 6) and an old group 

(> 50 yrs, 𝑛 = 7) (Fig. 2b).  

Age group data averaging and stiffness calculations for comparison with the 

"Reference Values for Arterial Stiffness' Collaboration" 

For both the young BP-lowered group and the old BP-lowered group, we calculated 

an average P-A relationship by averaging the individual baseline P-A curves in 𝐴-

direction. To enable comparison with reference values from the "Reference Values 

for Arterial Stiffness' Collaboration" [15], we estimated cPWV values on these 

average baseline P-A curves, similar to described above. We applied pre-defined 

normotensive (120/80 mmHg; cPWVmod120/80 as mentioned above) and 

hypertensive (160/90 mmHg; cPWVmod160/90) blood pressure profiles for this 

analysis. 

Statistical analysis 

Statistical analyses were performed using MATLAB (MATLAB R2013b, The 

MathWorks Inc, Natick, Massachusetts, USA). Unless otherwise indicated, non-

parametric Wilcoxon signed-rank or rank-sum tests were performed to evaluate 

statistical differences within patients and between groups, respectively. 𝑝-values ≤

0.05 were considered statistically significant. Unless otherwise indicated, values are 

given as mean ± SD. 

Agreement (bias and limits of agreement) between cPWV and cPWVpred changes at 

follow-up was assessed by Bland-Altman analysis.  
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RESULTS 

Reproducibility 

Intra-session SDs were 2 % for diastolic diameter, 13 % for relative distension, and 

7 % for relative notch amplitude. Intra-session SDs (post calibration) were 4 % for 

local carotid diastolic pressure, 10 % for pulse pressure and 5 % for relative notch 

amplitude. The absolute intra-session SD for diastolic blood pressure (DBP) was 

3.5 mmHg. 

Effect of BP-lowering 

At baseline, there were no significant differences in patient characteristics, BP, and 

arterial properties between the BP-lowered and BP-constant groups (Table 2).  

Compared to the control group, the BP-lowered group tended to have less anti-

hypertensive medication at baseline (0.8 ± 1.2 vs. 1.2 ± 1.9 DDD; Table 2) and had a 

more intensified regime at three-month follow-up (2.4 ± 1.4 vs. 1.5 ± 1.9 DDD, of 

which mainly renin-angiotensin-aldosterone system inhibitors: 1.4 ± 1.0 vs. 0.6 ±

0.9 DDD; not shown in table).  

The anti-hypertensive treatment particularly decreased SBP, showing a decrease 

twice that of DBP (Table 2), whilst HR, CO and SV did not change significantly (data 

not shown). 

Carotid stiffness as expressed by pulse wave velocity (cPWV) significantly decreased 

in the BP-lowered group (Table 2). The change in cPWV, however, was not 

significantly different between the BP-lowered and BP-constant groups. Model 

predictions of the change in cPWV at follow-up (cPWVpred) were on the same order 

of magnitude (−0.9 ± 0.4 m/s) as the measured change (−0.9 ± 1.1 m s⁄ ; 𝑝 = 0.95; 

Fig. 3). Bias and limits of agreement (Bland-Altman) between measured and 

predicted changes in cPWV were 0.0 ± 2.0 m/s. 

Age-associated differences with BP-lowering 

Table 3 discriminates baseline BP and arterial properties as well as their changes at 

follow-up for the young and old subjects with BP-lowering. There were no differences 

in sex, height, weight or BMI between age-groups. Differences in BP profiles and 
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carotid cross-sectional area were noted at baseline but these did not reach statistical 

significance. Baseline values and follow-up changes in DBP and Ad were not 

significantly different between age groups. The old group tended to have less anti-

hypertensive medication at baseline (0.6 ± 1.2 vs. 1.0 ± 1.4 DDD; Table 3) and had a 

more intensified regime at three-month follow-up (2.6 ± 1.5 vs. 2.2 ± 1.4 DDD, of 

which mainly renin-angiotensin-aldosterone system inhibitors: 1.7 ± 1.1 vs. 1.0 ±

0.9 DDD; not shown in table). 

Both age groups with BP-lowering showed significant reductions in SBP (−21 ±

9 mmHg, 𝑝 = 0.03 and −29 ± 9 mmHg, 𝑝 = 0.02 for < 50 and > 50 yrs, respectively; 

𝑝 = 0.18 for inter-group).  

Pulse pressure (PP) showed a significant decrease at follow-up in the old group only 

(−17 ± 7 mmHg, 𝑝 = 0.01; 𝑝 = 0.04 for inter-group difference). Stroke volume (SV) 

was unchanged (no difference between age groups; data not shown).  

Baseline cPWV differed significantly between age groups (Table 3). The measured 

change in cPWV was significant only in the old, amounting to −1.2 ± 1.0 m s⁄ , and 

similar to cPWV changes predicted by the patient-specific single-exponential model 

(cPWVpred; −1.1 ± 0.4 m/s).  

Baseline cPWVmod120/80was significantly different between age groups (Table 3). 

However, changes in cPWVmod120/80 at 3-month follow-up were not significant within 

the age groups and the changes at follow-up were not significantly different between 

age groups. 

Differences in pressure-area relationships between age groups 

Figure 4A shows the group-average of the single-exponential P-A curves of the 

individuals in both the young and old groups. With respect to the young group's 

curve, the old group's P-A curve is not only shifted rightward to larger areas but is 

also steeper, reflecting greater stiffness at corresponding to blood pressure levels. 

Figure 4A also indicates the normotensive and hypertensive pressure ranges we 

defined to assess more generically age-related differences in the P-A relationships 

(shaded areas). We calculated PWVs for these ranges (PWVs indicated in the figure 

and in Fig. 5A). These group-averaged PWVs suggest that for a given acute 
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decrease in SBP and DBP of 40 and 10 mmHg respectively, measured arterial 

stiffness may decrease more in older hypertensive patients (−1.3 m s⁄ ; mean age 

64 yrs) than in the younger (−0.9 m s⁄ ; mean age 41 yrs). These changes are clearly 

visible in Fig. 4B, where PWV is plotted as a function of DBP. 

Comparison with the "Reference Values for Arterial Stiffness' Collaboration" 

Figure 5 compares the stiffness-BP-age pattern found in our mechanistic study (a) 

with those found on statistical grounds in the reference population (b) [15]. Overall, 

the arterial stiffness patterns are very similar but their pressure-dependence at a 

given age appears greater in the reference population (between groups) than within 

our patients. Interestingly, the difference in pressure-dependence, i.e. the influence 

of the assumed BP change on measured stiffness, is the same for both: (1.3 − 0.9) =

(1.6 − 1.2) = 0.4 m s⁄ .  
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DISCUSSION 

The present study shows that clinically observable changes in arterial stiffness and 

BP are linked through the non-linear arterial P-A relationship, the effect of which 

appears modified with age. Our findings show that a short-term decrease in DBP of 

about 10 mmHg leads to a decrease in measured PWV of about 1 m s⁄ . This 

decrease is not caused by a change in the P-A relationship, since we were able to 

predict this decrease by imputing BP values at follow-up onto the (modelled) P-A 

curve at baseline. We did observe a difference in the carotid artery P-A relationship 

between young (41 yrs) and old (64 yrs) subgroups, the old group having greater 

cross-sectional area and increased stiffness at comparable DBP. Based on these 

age-stratified P-A data, we estimated generalized PWV values for predefined 

normotensive (120/80 mmHg) and hypertensive (160/90 mmHg) BP ranges. Our 

clinical measurements and the generalized data indicate that, for comparable 

changes in BP, PWV changes more in older subjects due to a higher degree of 

nonlinearity of the P-A relationship. The resultant stiffness-BP-age pattern proved 

strikingly similar to the pattern we read from the "Reference Values for Arterial 

Stiffness' Collaboration" study [15]. These findings indicate that the innate pressure-

dependence of arterial stiffness could have implications regarding patient vascular 

risk stratification and treatment monitoring. 

Influence of blood pressure on arterial stiffness measurements 

To quantitatively assess the impact of BP level on PWV measurements and 

corresponding risk scoring, we approached the BP-dependence of stiffness at the 

individual/small group level, using an established descriptive model [24]. This model 

was used to derive PWV at well-defined and comparable BP levels, as opposed to a 

statistical approach. Adjustment for mean arterial pressure in multiple linear 

regression models is only possible in moderate to large populations [25], whereas our 

approach allows individual quantification of the BP effect on stiffness. 

With our individualized 3-point P-A measurements and model fitting approach, we 

predicted cPWV changes following three months of anti-hypertensive treatment, 

under the assumption that no real change occurs in the P-A relationship (cPWVpred). 

The observation that the changes in cPWV and cPWVpred with BP-lowering were of 

similar magnitude suggests that short-term anti-hypertensive treatment has no effect 
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on intrinsic arterial wall stiffness, but reduces measured stiffness mainly via the 

nonlinear P-A relationship (exemplified with curve A; Fig. 1). The hypothesis of no 

real change in the P-A relationship could not be rejected, as the measured P-A 

curves at follow-up and their standardized stiffness values (cPWVmod120/80) were not 

significantly different. 

The measured 1 m s⁄  PWV decrease exceeds measurement variability, which is 

typically on the order of 0.5 m/s. Therefore, the pressure-dependence appears 

relevant when considering fixed cut-off values to triage individual patients based on 

PWV measurements. As such, our study specifically links part of the uncertainty in 

PWV determinations to actual BP levels, which is an issue both in initial risk 

stratification and in monitoring treatment effects. 

It is well known that the white-coat effect can cause office BPs to show higher values 

than a patient's actual BP as measured using ambulatory BP measurement. We 

assessed the effect of this artificially elevated measured BP on the measured arterial 

stiffness in the office (Supplemental Digital Content 1). Our analysis of the white-coat 

effect on arterial stiffness measurements showed a similar 1 m/s difference in 

stiffness linked to a 10 mmHg difference between mean ambulatory and study DBP. 

Taken together, our quantitative findings indicate that the (physically well-

established) pressure-dependence is relevant to consider in initial risk assessment 

and in monitoring treatment in individual patients. 

Influence of ageing on arterial stiffness and its pressure dependence 

Based on the stratification to age and on modelled P-A data, we consistently found a 

larger dependence of PWV on BP in older subjects than in younger. This difference 

with age is directly related to the steeper slope of the P-A relation, as notable from 

the modelled curves in Fig. 4. Our analysis based on predefined BP ranges (Fig. 5) 

further supports the notion of an age-related difference in pressure-dependence and 

that this observation is not a by-effect of the differing BP (ranges) between age 

groups. Rather, the intrinsically different P-A relationship explains the age-related 

difference in elastic behaviour. In addition to the increased slope, a greater average 

cross-sectional area with age is evident from our data (Fig. 4), which is in line with 

ex-vivo data [26]. It should however be noted, given discrepant observations in cross-
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sectional cohorts [26, 27], that longitudinal data on changes in arterial structure with 

ageing are much needed. Both the stiffening (increase in slope) and dilatory 

(increase in mean area) aspects are biomechanically consistent with the established 

concept of age-related degradation of the elastin structure in the wall and the 

resulting transfer of mechanical stress to the stiffer collagen network [11, 17, 28]. 

Stiffness, blood pressure and age as a pattern 

We found that the (modelled) within-age-group changes in stiffness with BP-lowering 

match well with the stiffness-BP-age pattern observed in the reference values 

population (Fig. 5). This match existed despite the obvious methodological 

differences, such as physical/statistical approach, number of subjects, intra-/inter-

subject comparison, carotid/aortic measurements and stiffness calculations, and 

outpatients/population characteristics. This prompts critical consideration of the 

pressure-dependence of stiffness measurements as advocated in clinical-

epidemiological research [15, 29, 30] and practice guidelines [8, 31]. 

Our study provides a physical underpinning of the epidemiological stiffness-BP-age 

data pattern, implying that at given age a considerable part of the arterial stiffness 

spread in the population may be simply explained by the non-linear elastic behaviour 

of arteries, having not so much to do with adaptive hypertrophy or hypertensive 

remodelling [32, 33]. The structural remodelling that does occur with ageing (Fig. 4) 

appears to accentuate the BP-related arterial stiffness spread in the older population 

[15]. 

In current clinical practice, treatment of hypertension is predominantly focussed on 

lowering blood pressure and much less on arterial wall stiffening as a potential cause 

for hypertension. However, current (2013) ESH guidelines [8] do state a PWV above 

10 m/s as an additional risk factor. Our study shows that, if the BP effect is not 

accounted for, consideration of arterial stiffness (as quantified by PWV) in risk 

scoring may introduce a spurious double scoring of high BP [8]. In this regard, our 

findings suggest that the arterial stiffness of patient A with a PWV of 9 m/s and 

diastolic BP of 70 mmHg may be considered equivalent to that of patient B with 

respective readings of 11 m/s and 90 mmHg. Hence, it may not be justified physically 

to score patient B +1 for increased arterial stiffness (cf. Table 4 in [8]). 



15 
 

 

The agreement between reference values data and our findings in clinical patients 

suggests that risk stratification on the basis of combined BP-age cut-off values would 

do more justice to the physical and practical aspects of arterial stiffness 

measurements. Alternative approaches to improve risk stratification would be (1) to 

use the individual patient's P-A data and calculate from a modelled curve the 

stiffness value at a fixed or normative (e.g. age-specific) BP level or, as a thumb-rule, 

or (2) to adjust PWV values for concurrently measured DBP at a rate of 1 m s⁄  per 

10 mmHg. 

Limitations 

Our study did not include a long-term follow-up. Therefore, we could not evaluate 

whether on the long-term the P-A relationship was modified by the anti-hypertensive 

treatment, as a sign of structural (re-)remodelling. Moreover, our observational study 

design and number of subjects do not allow a well-powered drug-specific analysis. In 

future studies, both short- and long-term follow-up measurements should be 

performed to be able to fully discriminate and quantify the pressure-dependent and -

independent effects of (anti-hypertensive) drugs on arterial wall structure [2, 9, 10, 

13]. 

We found zero bias between measured and predicted changes in cPWV. The limits of 

agreement, however, were substantial. With our sample size we could have detected 

a significant difference of > 0.8 m/s at a power of 80%. A large part of the variability 

is explained by the fact that the measured changes in cPWV were subject to 

variability in both pressure and area measurements, whereas the model-predicted 

changes were only subject to variability in pressure. 

Our study was set up as an observational study in consecutive patients, which, given 

non-compliance with the protocol (𝑛 = 3) and missing data (𝑛 = 2), led to basic 

exclusion of subjects (see Study population). Additionally, two subjects were 

excluded. One subject showed a convex P-A relationship at one visit, which is 

physically not plausible and very likely a measurement error. In the other subject, we 

did not obtain sufficiently stable pressure and area waveforms due to vessel 

movement. 
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We calculated PWV values not from transit time based measurements but from 

distensibility based on P-A data (Fig. 1). Cross-sectional arterial distensibility is 

physically related to PWV via the Bramwell-Hill relationship [23]. This approach is 

required, because transit time PWV measurement does not allow discrimination of 

stiffness within the diastolic-systolic range, to which the non-invasive assessment of 

large artery stiffness is practically limited to. Moreover, our aim was to get a feeling of 

the order of magnitude of the pressure dependence, not to establish absolute 

agreement between the two approaches. 

It should be stressed that our 3-point P-A approach is not affected by apparent 

hysteresis caused by phase errors or time-delays between pressure and area 

waveform signals [6], given that we only consider corresponding P and A amplitudes. 

Hysteresis due to viscous behaviour of the arterial wall in-vivo using a well-

characterized measurement set-up is negligible [7, 34]. 

Our measurements included carotid artery applanation tonometry, which requires 

substantial applied pressure to applanate the vessel. Consequently, baroreflex 

modulation may have potentially affected hemodynamic conditions. Using the 

continuous finger blood pressure and HR data acquired (Nexfin device), we tested 

whether HR and relative dicrotic notch height (in the finger pressure waveform) were 

different between carotid (potential baroreflex effect) and femoral (no baroreflex 

effect) tonometry recordings. Three repeated and alternating carotid and femoral 

tonometry acquisitions were performed in all subjects (𝑛 = 23). We found no 

difference in HR (62.5 bpm carotid vs. 63.1 bpm femoral, 𝑝 = 0.24) and no difference 

in relative dicrotic notch height (0.39 carotid vs. 0.38 femoral, 𝑝 = 0.24). Moreover, 

the tonometric pressure waveform was calibrated to absolute values using session-

averaged brachial blood pressures, hence potential baroreflex-mediated noise or 

bias in mean or pulse pressure during tonometry will not have propagated into our P-

A data. Taken together, it appears unlikely that the tonometry measurements in our 

study affected proper correspondence between P and A datapoints. 

We approached ageing by cross-sectional data. Ideally, ageing effects should be 

assessed longitudinally, following patients over time, as for example in the recently 

published study by AlGhatrif et al [35]. Unfortunately, AlGhatrif et al. did not include 

information on the BP change between baseline and follow-up, i.e. only BP category 
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at baseline was used as a statistical model determinant. Additionally, the question 

can be asked whether our small study in hypertensives is sufficiently powered and 

representative. While our stiffness-BP-age pattern agrees well with the reference 

values data as well as with current mechanistic concepts of arterial wall elastic 

behaviour and remodelling, we conclude that there is strong mechanistic and 

epidemiological evidence corroborating our present findings [5, 11, 15-17, 26]. 

Perspectives 

We conclude that short-term changes in arterial stiffness (in PWV terms) concurrent 

with BP-lowering can be deemed BP-dependent, at a rate of about 1 m/s per 10 

mmHg DBP. We also found that this pressure-dependence appears greater in older 

subjects, which is consistent with changes in the arterial pressure-area relationship 

due to age-related structural remodelling. Both these BP and age influences are 

responsible for the clinical and epidemiological patterns observed between stiffness 

(PWV), BP and age. While current treatment of hypertension is focussed on lowering 

BP, ESH guidelines (2013) include the option to score a PWV above 10 m/s as an 

additional risk factor. Based on the physically underpinned insights that our study 

yields, combined BP-age specific PWV thresholds seem more justified for use in 

vascular risk management than the current absolute threshold of 10 m/s. Our non-

invasive model-based methodology is feasible in a vascular clinic setting and could 

improve identification of treatment effects on arterial wall structure, by discriminating 

BP-dependent and -independent changes in arterial wall elastic properties. 
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FIGURE LEGENDS 

Figure 1. Study scope: quantitative influences of blood pressure and age on 

measured stiffness. Given a curvilinear pressure-area (P-A) relationship, short term 

changes in pressure will directly lead to changes in cross-sectional area and 

incremental slope (as indicated for curve A). The related changes in pulse wave 

velocity (PWV) in this case are not due to a change in the P-A relationship (cf. point 1 

vs. 2). The stiffness assessed at the same pressure level in a remodelled vessel, 

illustrated by curve B, will be different due to a real change in the P-A relationship, as 

is known to occur with e.g. ageing (cf. point 1 vs. 3). Then ageing is expected to also 

modulate the pressure-related change in measured stiffness (consider the difference 

between 1 vs. 2 and 3 vs. 4). ρ, blood mass density. 

Figure 2. A: Study set-up. At baseline, subjects had discontinued anti-hypertensive 

(anti-HT) medication, which was increased directly after the baseline visit. During 

both baseline and follow-up visits, carotid artery tonometry and ultrasound (US) wall 

tracking were used to obtain a local pressure-area (P-A) relationship of the carotid 

artery wall. From the P-A relationship, carotid pulse wave velocity (cPWV) was 

calculated using the Bramwell-Hill relationship. The change in measured cPWV from 

baseline to follow-up is termed ΔcPWV. The baseline P-A curve of each subject was 

modelled by an exponential function. Using this baseline model and follow-up blood 

pressures, the change in cPWV with respect to baseline could be predicted 

(ΔcPWVpred), assuming that the P-A relationship did not change between baseline 

and follow-up. B: Subject stratification for analyses of blood pressure (BP) and age 

effects on measured stiffness. BP-constant, subjects which did not show a decreased 

diastolic blood pressure at follow-up. BP-lowered, subjects that did show a decrease 

in diastolic blood pressure of at least 7 mmHg. Young, subjects < 50 yrs; Old, 

subjects > 50 yrs. 

Figure 3. Measured (meas) carotid artery stiffness (carotid pulse wave velocity, 

cPWV; Bramwell-Hill) in the blood pressure-lowered group (𝑛 = 13) at baseline and at 

follow-up, in comparison with predicted (pred) changes based on follow-up blood 

pressures and using the single exponential model fitted to individual pressure-area 

data obtained at baseline. 
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Figure 4. A: Comparison of the young and old groups' pressure-area relationships. 

Note that the old group operates at a greater average cross-sectional area than the 

young group. To study the stiffness-pressure- age relationship more generically, we 

pre-defined normotensive and hypertensive blood pressure ranges, as indicated by 

the shaded areas. Pulse wave velocities for these ranges are indicated in the figure, 

and replicated in Fig. 5A. B: Pressure-dependence of pulse wave velocity. Pulse 

wave velocities for normotensive and hypertensive groups in A as a function of 

diastolic blood pressure. Systolic and diastolic pressures are indicated in the figure 

as systolic/diastolic blood pressure. Note that in the old group, the pulse wave 

velocity increase with diastolic blood pressure is larger than in the young group 

(steeper slope of the lines). 

Figure 5. Arterial stiffness, blood pressure and age patterns of the present study and 

the "Reference Values for Arterial Stiffness’ Collaboration" are strikingly similar. 

Stiffness, as indicated by pulse wave velocity (PWV) is shown for the mean ages of 

the two age groups in the present study (baseline visit) and pre-defined normotensive 

(120/80 mmHg) and hypertensive (160/90 mmHg) pressure ranges. ∆: difference in 

PWV between hypertensive and normotensive conditions. A: Carotid artery PWV 

values derived from the modelled pressure-area curves (cPWVmod120/80 and 

cPWVmod160/90) via Bramwell-Hill for young and old groups. B: Carotid-femoral 

PWVs derived from published data from the "Reference Values for Arterial Stiffness’ 

Collaboration" ([15]: Fig. 4, bottom and Table 6, bottom; PWVs linearly interpolated 

between age categories and at corresponding mean arterial pressures (MAP = 0.4 ∙

SBP + 0.6 ∙ DBP), i.e. hypertensive 118 and normotensive 96 mmHg). DBP, diastolic 

blood pressure; SBP, systolic blood pressure.  
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TABLES 

Table 1. Baseline characteristics of study population 

𝑛   23  

age yrs 56 ± 15 

sex  11m / 12f 

height cm 172 ± 8 

BMI kg/m2 27 ± 4 

aSBP mmHg 140 ± 15+ 

aDBP mmHg 91 ± 11+ 

aHR 1/min 73 ± 9+ 

dipper  8y / 14n+ 

     

 𝑛*  DDD*  

anti-HT meds 9 2.6 ± 1.6 
ACEi/ARB 7 2.0 ± 0.5 

BB 7 0.6 ± 0.3 
CCB 1  2.0  

diuretics 5 0.7 ± 0.3 

Mean ±  SD. aSBP and aDBP, 24h-average systolic and diastolic blood pressure; aHR, 

24h-average heart rate. dipper defined as night SBP <  85 % of day SBP. +𝑛 = 22. 

*Numbers (𝑛) and daily defined doses (DDD) pertain to only those receiving 

medication at baseline. Most of those not taking anti-hypertensive (anti-HT) drugs at 

baseline had discontinued medication prior to clinical blood pressure profiling. ACEi, 

angiotensin converting enzyme inhibitors; ARB, angiotensin receptor blockers; BB, 

beta blockers; CCB, calcium channel blockers. 
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Table 2. Changes in blood pressure and arterial properties without and with blood 

pressure-lowering 

  all subjects 

  baseline  change at three-month follow-up 

  BP-constant  BP-lowered  BP-constant  BP-lowered 

𝑛   10    13    10    13  

age yrs 59 ± 17  53 ± 14         

meds DDD 1.2 ± 1.9  0.8 ± 1.2  0.3 ± 0.6  1.6 ± 0.8*,‡ 

SBP mmHg 154 ± 24  163 ± 29  1 ± 14  -25 ± 10*,‡ 

DBP mmHg 87 ± 10  94 ± 9  1 ± 5  -12 ± 6*,‡ 

PP mmHg 67 ± 22  69 ± 29  -0 ± 13  -13 ± 9*,‡ 

cPWV m/s 10.8 ± 2.3  10.7 ± 3.1  0.1 ± 1.5  -0.9 ± 1.1* 

cPWVpred m/s         0.1 ± 0.4  -0.9 ± 0.4*,‡ 

Mean ±  SD. meds denotes antihypertensive medication in daily defined dose (DDD); 

*denotes 𝑝 < 0.05 for change at follow-up compared to baseline (Wilcoxon signed-

rank test); ‡denotes 𝑝 < 0.05 for difference between BP-constant and BP-lowered 

groups (Wilcoxon rank-sum test). Sex differences were not statistically significant 

(𝑝 = 0.21, Fisher's exact test). BP, blood pressure; meds, anti-hypertensive 

medication; SBP and DBP, systolic and diastolic blood pressures; PP, pulse pressure; 

cPWV, carotid pulse wave velocity; cPWVpred, cPWV predicted from the baseline 

pressure-area model curve and follow-up BP.  
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Table 3. Blood pressure lowering-related changes in arterial properties in younger 

and older patients 

  BP-lowered patients 

  baseline  change at three-month follow-up 

  age <50 yrs  age >50 yrs  age <50 yrs  age >50 yrs 

𝑛   6    7    6    7  

age yrs 41 ± 6  64 ± 9‡         

meds DDD 1.0 ± 1.4  0.6 ± 1.1  1.2 ± 0.8  2.0 ± 0.7* 

SBP mmHg 149 ± 17  174 ± 34  -21 ± 9*  -29 ± 9* 

DBP mmHg 95 ± 12  92 ± 4  -13 ± 4*  -12 ± 8* 

PP mmHg 54 ± 14  82 ± 33  -8 ± 9  -17 ± 7*,‡ 

𝐴d mm2 46.3 ± 9.0  58.5 ± 16.7  -1.5 ± 0.9  -2.9 ± 5.5 

cPWV m/s 8.4 ± 1.2  12.7 ± 2.9‡  -0.5 ± 1.1  -1.2 ± 1.0* 

cPWVpred m/s         -0.7 ± 0.3*  -1.1 ± 0.4* 

cPWVmod120/80 m/s 7.4 ± 1.0  11.0 ± 2.1‡  0.2 ± 0.9  -0.2 ± 1.0 

Mean ±  SD. meds denotes antihypertensive medication in daily defined dose (DDD); 

*denotes 𝑝 < 0.05 for change (Wilcoxon signed-rank test); ‡denotes 𝑝 < 0.05 for 

difference between age groups (Wilcoxon rank-sum test). Sex differences were not 

statistically significant (𝑝 = 0.59, Fisher's exact test). BP, blood pressure; BMI, body 

mass index; meds, anti-hypertensive medication; SBP and DBP, systolic and diastolic 

blood pressures; PP, pulse pressure; 𝐴d, diastolic cross-sectional area; cPWV, carotid 

pulse wave velocity; cPWVpred, cPWV predicted from baseline P-A relationship and 

follow-up blood pressures; cPWVmod120/80, cPWV calculated for standardized BP of 

120/80 mmHg.
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FIGURES 

 

Figure 1. Study scope: quantitative influences of blood pressure and age on 

measured stiffness. Given a curvilinear pressure-area (P-A) relationship, short term 

changes in pressure will directly lead to changes in cross-sectional area and 

incremental slope (as indicated for curve A). The related changes in pulse wave 

velocity (PWV) in this case are not due to a change in the P-A relationship (cf. point 1 

vs. 2). The stiffness assessed at the same pressure level in a remodelled vessel, 

illustrated by curve B, will be different due to a real change in the P-A relationship, as 

is known to occur with e.g. ageing (cf. point 1 vs. 3). Then ageing is expected to also 

modulate the pressure-related change in measured stiffness (consider the difference 

between 1 vs. 2 and 3 vs. 4). ρ, blood mass density. 
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Figure 2. Study set-up and derivation of measured and predicted changes in carotid 

stiffness. A: The change in measured carotid pulse wave velocity (cPWV) from 

baseline to follow-up is termed ΔcPWV. The baseline pressure-area (P-A) curve of 

each subject was modelled by an exponential function. Using this baseline model 

and follow-up blood pressures, the change in cPWV with respect to baseline could be 

predicted (ΔcPWVpred), assuming that the P-A relationship did not change between 

baseline and follow-up. B: Stratification for analyses of blood pressure (BP) and age 

effects on measured stiffness. Young, subjects < 50 yrs; Old, subjects > 50 yrs; US, 

ultrasound.  
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Figure 3. Measured (meas) carotid artery stiffness (carotid pulse wave velocity, 

cPWV; Bramwell-Hill) in the blood pressure-lowered group (𝑛 = 13) at baseline and at 

follow-up, in comparison with predicted (pred) changes based on follow-up blood 

pressures and using the single exponential model fitted to individual pressure-area 

data obtained at baseline. Whiskers indicate standard deviation. 
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Figure 4. Relationship between age, blood pressure, and pulse wave velocity. A: 

Comparison of the young and old groups' pressure-area relationships. Note that the 

old group operates at a greater average cross-sectional area than the young group. 

To study the stiffness-pressure- age relationship more generically, we pre-defined 

normotensive and hypertensive blood pressure ranges, as indicated by the shaded 

areas. Pulse wave velocities for these ranges are indicated in the figure, and 

replicated in Fig. 5A. B: Pressure-dependence of pulse wave velocity. Pulse wave 

velocities for normotensive and hypertensive groups in A as a function of diastolic 

blood pressure. Systolic and diastolic pressures are indicated in the figure as 

systolic/diastolic blood pressure. Note that in the old group, the pulse wave velocity 

increase with diastolic blood pressure is larger than in the young group (steeper 

slope of the lines).  
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Figure 5. Arterial stiffness, blood pressure and age patterns of the present study and 

the "Reference Values for Arterial Stiffness’ Collaboration" are strikingly similar. 

Stiffness, as indicated by pulse wave velocity (PWV) is shown for the mean ages of 

the two age groups in the present study (baseline visit) and pre-defined normotensive 

(120/80 mmHg) and hypertensive (160/90 mmHg) pressure ranges. ∆: difference in 

PWV between hypertensive and normotensive conditions. A: Carotid artery PWV 

values derived from the modelled pressure-area curves (cPWVmod120/80 and 

cPWVmod160/90) via Bramwell-Hill for young and old groups. B: Carotid-femoral 

PWVs derived from published data from the "Reference Values for Arterial Stiffness’ 

Collaboration" ([15]: Fig. 4, bottom and Table 6, bottom; PWVs linearly interpolated 

between age categories and at corresponding mean arterial pressures (MAP = 0.4 ∙

SBP + 0.6 ∙ DBP), i.e. hypertensive 118 and normotensive 96 mmHg). DBP, diastolic 

blood pressure; SBP, systolic blood pressure. 
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