9,841 research outputs found

    Spatial rogue waves in photorefractive SBN crystals

    Full text link
    We report on the excitation of large-amplitude waves, with a probability of around 1% of total peaks, on a photorefractive SBN crystal by using a simple experimental setup at room temperature. We excite the system using a narrow Gaussian beam and observe different dynamical regimes tailored by the value and time rate of an applied voltage. We identify two main dynamical regimes: a caustic one for energy spreading and a speckling one for peak emergence. Our observations are well described by a two-dimensional Schr\"odinger model with saturable local nonlinearity.Comment: 4 pages, 4 figure

    Nanoscale π-π Stacked molecules are bound by collective charge fluctuations

    Get PDF
    Non-covalent π-π interactions are central to chemical and biological processes, yet the full understanding of their origin that would unite the simplicity of empirical approaches with the accuracy of quantum calculations is still missing. Here we employ a quantum-mechanical Hamiltonian model for van der Waals interactions, to demonstrate that intermolecular electron correlation in large supramolecular complexes at equilibrium distances is appropriately described by collective charge fluctuations. We visualize these fluctuations and provide connections both to orbital-based approaches to electron correlation, as well as to the simple London pairwise picture. The reported binding energies of ten supramolecular complexes obtained from the quantum-mechanical fluctuation model joined with density functional calculations are within 5% of the reference energies calculated with the diffusion quantum Monte-Carlo method. Our analysis suggests that π-π stacking in supramolecular complexes can be characterized by strong contributions to the binding energy from delocalized, collective charge fluctuations-in contrast to complexes with other types of bonding

    Computer simulation of crystallization kinetics with non-Poisson distributed nuclei

    Full text link
    The influence of non-uniform distribution of nuclei on crystallization kinetics of amorphous materials is investigated. This case cannot be described by the well-known Johnson-Mehl-Avrami (JMA) equation, which is only valid under the assumption of a spatially homogeneous nucleation probability. The results of computer simulations of crystallization kinetics with nuclei distributed according to a cluster and a hardcore distribution are compared with JMA kinetics. The effects of the different distributions on the so-called Avrami exponent nn are shown. Furthermore, we calculate the small-angle scattering curves of the simulated structures which can be used to distinguish experimentally between the three nucleation models under consideration.Comment: 14 pages including 7 postscript figures, uses epsf.sty and ioplppt.st

    Microwave Electronics

    Get PDF
    Contains research objectives.U. S. ArmyLincoln Laboratory, Purchase Order DDL B-00368U. S. Air Force under Air Force Contract AF19(604)-7400U. S. Nav

    Classical and quantum dynamics of a spin-1/2

    Get PDF
    We reply to a comment on `Semiclassical dynamics of a spin-1/2 in an arbitrary magnetic field'.Comment: 4 pages, submitted to Journal of Physics

    Stability and Symmetry Breaking in Metal Nanowires

    Full text link
    A general linear stability analysis of simple metal nanowires is presented using a continuum approach which correctly accounts for material-specific surface properties and electronic quantum-size effects. The competition between surface tension and electron-shell effects leads to a complex landscape of stable structures as a function of diameter, cross section, and temperature. By considering arbitrary symmetry-breaking deformations, it is shown that the cylinder is the only generically stable structure. Nevertheless, a plethora of structures with broken axial symmetry is found at low conductance values, including wires with quadrupolar, hexapolar and octupolar cross sections. These non-integrable shapes are compared to previous results on elliptical cross sections, and their material-dependent relative stability is discussed.Comment: 12 pages, 4 figure
    corecore