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Nanoscale p–p stacked molecules are bound by
collective charge fluctuations
Jan Hermann1, Dario Alfè2,3,4 & Alexandre Tkatchenko1,5

Non-covalent p�p interactions are central to chemical and biological processes, yet the full

understanding of their origin that would unite the simplicity of empirical approaches with the

accuracy of quantum calculations is still missing. Here we employ a quantum-mechanical

Hamiltonian model for van der Waals interactions, to demonstrate that intermolecular

electron correlation in large supramolecular complexes at equilibrium distances is

appropriately described by collective charge fluctuations. We visualize these fluctuations and

provide connections both to orbital-based approaches to electron correlation, as well as to

the simple London pairwise picture. The reported binding energies of ten supramolecular

complexes obtained from the quantum-mechanical fluctuation model joined with density

functional calculations are within 5% of the reference energies calculated with the diffusion

quantum Monte-Carlo method. Our analysis suggests that p� p stacking in supramolecular

complexes can be characterized by strong contributions to the binding energy from

delocalized, collective charge fluctuations—in contrast to complexes with other types of

bonding.
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T
he non-covalent p�p interactions between conjugated
aromatic rings play a key role in a wide range of chemical
and biological processes. These interactions contribute

significantly to nucleobase stacking in RNA and DNA1, protein
folding2, molecular recognition3, template-directed synthesis4

and assembly of van der Waals (vdW) heterostructures5.
Despite intense experimental and theoretical studies, the
conceptual understanding of p�p interactions in these
complex systems is still largely based on small model systems
such as the prototypical benzene dimer. Hunter and Sanders6

coined a classical perspective on p�p interactions, in which they
emphasized the electrostatic quadrupole interactions between
p orbitals. With later advances in electronic structure theory,
it became clear that the reality is in fact an intricate interplay
between electrostatic interactions, Pauli repulsion and London
dispersion. Countless efforts have been put into the correct
prediction of the most stable conformer of the benzene dimer,
resulting in the excellent accuracy of B0.1 kcal mol� 1

(refs 7–12). However, due to the complex mathematical
structure of high-level quantum chemistry methods, the
complete understanding of the nature of the binding remains a
challenge even in such relatively small systems. This situation
even led to recent suggestions that there is really nothing special
about p�p stacking in terms of intermolecular interactions, and
that the term should be abandoned altogether13,14. On the other
hand, Dobson and others15 have emphasized that collective
plasmon fluctuations in zero-gap one-dimensional and two-
dimensional systems, including conjugated graphene sheets, can
lead to unusual power laws for the binding energies at separations
beyond 10 nm15,16. The transition from the zero to finite gap
between the highest occupied and lowest unoccupied molecular
orbital (HOMO-LUMO) was further investigated by Misquitta
et al.17 who related the difference to the inherently non-local
response of the zero-gap systems. The plasmon-based approaches
are effective for revealing asymptotic behaviour of vdW
interactions between prototypical low-dimensional systems.
However, conceptual understanding of interactions for
equilibrium molecular geometries and their quantitative
description remains an open problem.

In this work, we present a viewpoint on binding in
supramolecular p� p systems that is based on correlation of
collective quantum electron-density fluctuations, while being
backed up by a quantitative model that is able to provide highly
accurate predictions of binding energies. To this end, we employ
the many-body dispersion (MBD) method18,19, which captures the
anisotropy and collective nature of long-range correlation in such
systems, while maintaining a wavefunction that is transparent
enough for further analysis. We establish validity of this model by

comparing with the binding energies of ten supramolecular
complexes obtained by high-level diffusion quantum Monte-
Carlo (DQMC) calculations. We then proceed to show how the
correlation mechanism in MBD corresponds to that of virtual
electronic excitations to unoccupied p-like orbitals in correlated
quantum chemistry methods. This enables us to interpret the
fluctuations in this model directly as correlated charge oscillations
of the electronic clouds. We provide visual representation of these
collective fluctuations and show how they build on, extend and
generalize the atomic pairwise picture of London dispersion from
small model molecules to large realistic systems. Furthermore, we
decompose the total binding energies of various types of
supramolecular complexes into the individual fluctuation modes
and thus provide evidence that the collective nature of these
fluctuations is characteristic of the conjugated systems.

Results
Binding energies of three supramolecular complexes. We start
by analysing a set of three already synthesized20,21 and
theoretically investigated22–24 supramolecular p�p complexes
(Fig. 1a), consisting of a C70 fullerene guest molecule hosted by
two different cycloparaphenylenes (CPPs; C1 and C2) and a
buckycatcher molecule (C3). The CPPs are the simplest structural
units of ‘armchair’ carbon nanotubes and their complexes are
precursors of fullerene peapods25,26. The buckycatcher complex,
on the other hand, represents a class of convex–concave p� p
systems27. The experimental free energies of association of these
complexes are 7, 7 (ref. 28) and 5 kcal mol� 1 (ref. 29),
respectively, making C1 and C2 degenerate in terms of stability.
Reliable theoretical prediction of free energies of association is yet
an unsolved task burdened by numerous complications, especially
concerning the contribution of solvation effects30. Our focus here
is instead on the electronic origin of p�p bonding and hence the
relevant quantities are the binding energies. As we need to
validate our vdW model as described below, we require reliable
reference results to begin with. To avoid the issues associated with
estimating binding energies from experimental free energies,
we have employed a theoretical reference in the form of DQMC
binding energies as an alternative. DQMC approximates the exact
solution of the electronic Schrödinger equation to an arbitrary
level of accuracy within the fixed-node approximation31 and has
been shown to yield agreement within 0.1 kcal mol� 1 with the
quantum-chemical coupled-cluster method, which is considered
the ‘gold standard’ for mid-sized molecular complexes32.
However, unlike the coupled-cluster method, DQMC scales
favourably with the system size and permits calculations of larger
systems33–35, including the ones of concern here. We note that
relative trends in the binding energies of the complexes (Fig. 2),
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Figure 1 | Equilibrium structures of studied p�p stacked complexes. Marked distances are in ångströms. Geometries of all structures are available

as XYZ files in Supplementary Data 1. (a) Three supramolecular complexes comprising the fullerene C70 molecule (grey) as a guest in three different

hosts (black and white): [10]-and [11]CPP, and a buckycatcher molecule, labelled C1, C2 and C3, respectively. (b) Benzene dimer in its two nearly

degenerate conformations: stacked parallel-displaced (top) and T-shaped (bottom).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14052

2 NATURE COMMUNICATIONS | 8:14052 | DOI: 10.1038/ncomms14052 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


including the degeneracy of C1 and C2, match with the trends in
the free energies of association, further supporting our focus on
the binding energies.

Although DQMC provides highly accurate predictions of the
binding energies, its wavefunction is not directly accessible,
hindering any conceptual insight into the nature of the
binding and requiring calculations at the edge of current high-
performance computing. To overcome this limitation, we employ
the MBD model, which is built on a quantum-mechanical
Hamiltonian that can be solved exactly and at a manageable
computational cost18,19, and show that the resulting
wavefunctions can be interpreted in a straightforward manner.
In particular, the MBD model represents each atom with a
pseudoelectron in a harmonic potential, which is constructed in
such a way as to reproduce the long-range dynamic response of
valence electrons of an atom within a 3% accuracy36. The
quantum charge fluctuations in such pseudoatoms are then
correlated within the dipole approximation to all orders of the
interaction potential, to obtain the long-range electron correlation
energy37,38. The MBD method has been successfully used to
model vdW interactions in a broad range of systems, ranging
from small gas-phase complexes to molecular crystals39, to hybrid
interfaces40, to complex nanostructured materials34.

Correct description of binding energetics in supramolecular
complexes is challenging due to the delicate balance between
different types of intermolecular interactions. Therefore, any
approximate model requires a systematic verifications of its
accuracy for a given class of supramolecular systems. In this
regard, Fig. 2 demonstrates that MBD is fully capable of
describing all three complexes C1–C3. The only deviation from
the reference occurs for C3 and amounts to an underbinding of
1.5 kcal mol� 1 (4%) outside the statistical range given by DQMC,
which can be attributed to possible inaccuracies in the coupling of
MBD to the underlying density functional of Perdew, Burke, and
Ernzerhof (PBE) and to neglected higher-multipole coupling. To
put the predictions of MBD in context, they can be compared
with those of the D3 dispersion model as calculated by Antony
et al.24 D3 employs a pairwise approximation to London
dispersion with an optional three-body correction and, although

the latter improves the bare pairwise results (see Fig. 2), the
deviations from DQMC are still as much as 7 kcal mol� 1.
Without the three-body correction, the deviations would be as
much as 12 kcal mol� 1, suggesting already at this level the
importance of the higher-order contributions. An explanation for
why the higher-order contributions destabilize the complexes
within the framework of MBD is given below.

Changes in molecular polarizabilities. Having established the
accuracy of MBD for the systems in question, we proceed with
analysis of the mechanism of the binding by inspecting the
correlated wavefunctions of the MBD Hamiltonian. The many-
body correlation effects can be roughly divided into intra- and
intermolecular terms. Within an isolated molecule or material,
they manifest themselves in the non-trivial dependence of
the total polarizability on the system size41,42. The long-range
electrodynamic screening can lead to both increased or decreased
polarizability with respect to sum of atomic polarizabilities,
depending on the geometry and dimensionality of the system. For
example, fullerenes with their relatively bulky shape are typically
depolarized by these effects18, whereas linear and planar systems
often exhibit enhanced polarizability. The latter can lead to
increased stabilization of some p� p stacked systems as observed
by Grimme and colleagues13,43 for linear condensed acenes. In
the complexes studied here, the fullerene molecule shows 25%
depolarization with respect to the sum of atomic polarizabilities,
whereas the CPP rings in C1 and C2 show 31% and 35% increase,
respectively. Having said that, this intramolecular portion of the
electron correlation, while heavily influencing the magnitude of
the intermolecular binding, is not its cause. In particular, the
intramolecular correlation is captured in the diagonal blocks of
the non-local polarizability a(r, r0), the blocks being defined by
the interacting components (see Fig. 3 and Supplementary Figs 1
and 2 for plots of a). The intermolecular correlation, on the other
hand, is encoded in the much finer structure of the off-diagonal
blocks, which is propagated into differences in the wavefunction of
the whole complex with respect to those of the isolated fragments.

Charge polarization induced by vdW interactions. In the
quantum chemistry picture, the correlation of the fragment
wavefunctions in conjugated complexes occurs largely via p-p*DQMC (reference) MBD
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Figure 2 | Interaction energies of complexes C1–C3 (kcal mol� 1).

The energies are evaluated with respect to relaxed fragments (see

Supplementary Data 1). DQMC is the reference diffusion quantum

Monte-Carlo method31. The blue bar indicates the statistical sampling

errors in the energy, which are inherent to the method. MBD is the

MBD method19 calculated on top of the PBE exchange-correlation density

functional58. D3 is the DFT-D3 approach59 with the optional three-body

correction on top of the PW6B95 density functional; the values were taken

from refs 23,24. Numerical values are presented in Supplementary Table 1.
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Figure 3 | Heat map of the xy component of the interfragment non-local

polarizability a
xy
AB in [10]CPP–C70. Red and blue represent positive and

negative values, respectively. Rows and columns correspond to carbon

atoms of [10]CPP and C70, respectively, with four select carbon atoms

color-coded to the marked atoms in the structure in the inset.
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excitations to the unoccupied p-like orbitals. As these orbitals
have a larger spatial extent, this correlation process leads to shift
of the electrons from the atoms to the outer regions. In the
density functional theory (DFT) picture, the correlation is
induced by a change in the local exchange-correlation potential,
which becomes decaying slightly slower with the distance from
the nuclei, allowing the electrons to shift outwards. Figure 4a
shows such a shift in a benzene dimer as obtained from a DFT
calculation with the self-consistent Tkatchenko–Scheffler (TS)
functional44. Finally, consider the MBD picture, where the
correlation arises via coupling of the charge fluctuations within
the individual fragments into collective fluctuations that may
span the whole complex. These are obtained directly as single-
particle solutions fi of the underlying many-body Hamiltonian
ĤMBD (see equation (5) in Methods),

ĥMBD
i fi

�xi

� �
¼�oifi

�xi

� �
ð1Þ

where �oi are frequencies (energies) of the coupled fluctuations,
which have the form of linear combinations of the atomic
fluctuations, �xi¼

P
A CiAxA. The binding combinations (in

analogy to bonding orbitals) have lower energies, which leads
to an increased spatial extent of the fluctuations as shown by the
charge density differences in Fig. 4b. The charge densities r(r) are
calculated explicitly from the MBD coupled wavefunctions
cMBDj i¼

Q
i fi

�xi

� �
via the charge density operator r̂ (see

Methods for details),

rMBD rð Þ¼ cMBD r̂j jcMBDh i ð2Þ

The total displaced charge (integral over charge-accumulating
regions) amounts to 0.0101 and 0.0097 electrons, as obtained
from the TS density functional and the MBD wavefunctions,
respectively. Given the much different basis of these two
approaches and the absence of any explicit parametrization of
MBD with respect to spatial representation of the electron
density, we find the close match between the two approaches
reassuring of the solid physical foundation of the underlying
charge fluctuations in MBD.

The orbital-based approaches of quantum chemistry can be
linked to MBD by considering the solution of the MBD
Hamiltonian as would be provided by standard quantum
chemistry methods. In such an approach, the ground s-states
of the harmonic oscillators in MBD would be correlated via
virtual excitations to their first excited states, which have the
symmetry of p-orbitals. As atomic p-orbitals form the basis of
the molecular p-orbitals, this may explain why MBD is
particularly fitting for description of p�p systems. (We note
that this analogy is only partial though—the final states in the
transitions are corresponding, but the initial states have a
different symmetry.) Figure 4c illustrates that in a large
supramolecular p�p complex, the charge polarization
induced by vdW interactions fills the whole intermolecular
region. In this case, the total displaced charge amounts to 0.11
electrons, an order of magnitude increase from the benzene
dimer, which corresponds to the same increase in the vdW
interaction energy.
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Figure 4 | Analysis of correlated charge fluctuations in supramolecular complexes and benzene dimer. (a–c) Electron density differences (charge

polarization) between a complex and its isolated fragments induced by vdW interactions. Yellow and blue colour denote accumulation and depletion of

charge density, respectively. Magnitude of the density difference is mapped to saturation of the colour with 50% saturation corresponding to the density of

2� 10� 5 and 4� 10� 5 a.u. for the benzene dimer and the complex C1, respectively. Charge polarizations were obtained either from a DFT calculation with

a self-consistent TS functional in the parallel-displaced benzene dimer (see Fig. 1) (a) or directly from the correlated MBD wavefunctions (see main text for

details) for the benzene dimer (b) and the complex C1 (c). In the latter case, the relevant charge densities are calculated as expectation values of the charge

density operator, cMBD r̂j jcMBDh i. (d) Energy densities of the oscillation states for parallel-displaced benzene dimer (top) and complex C1 (bottom).

Gaussian smoothing with half-width of 0.06 eV was applied. (e,f) Select collective fluctuation modes. The arrows represent in-phase dipole fluctuations of

the electron density on the individual atoms. For benzene dimer (e), the lowest-energy dipole–dipole corresponds to the in-plane fluctuations on both

monomers in the parallel-displaced conformation (top), but not in the T-shaped conformation (bottom). For complex C1 (f), the dipole (left) and

quadrupole (right) in-plane oscillations are amongst the ones most contributing to the total binding energy.
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Formation of collective charge fluctuations. The formation of
collective fluctuations in the complex is associated with a
broadening of the oscillation frequencies with respect to those in
the isolated fragments, which can be directly observed on the
energy densities of the oscillation states. Figure 4d shows that
although this broadening has a more complex shape in the
complex C1 than in the benzene dimer, the overall character is
similar in both cases, reflecting the fact that the mechanisms of
the binding are in fact the same. We note that in contrast to
the splitting of atomic orbital energies on formation of
molecular orbitals, which is symmetric and facilitates the bonding
via partial occupancy of the orbital space, here all states are singly
occupied (the fluctuations are bosonic) and the binding arises as a
result of an asymmetry in the splitting. Further insight can be
obtained by analysing individual oscillation modes. Many of the
collective modes have a distinct character that corresponds to
global dipole, quadrupole or higher-multipole oscillations
extending over the whole complex. In general, the energy
ordering of the modes coincides with an increasing angular
moment, with collective dipole-like fluctuations having typically
the lowest energy. However, this is not always the case as can be
observed on the two nearly degenerate conformations of the
benzene dimer. Figure 4e shows that in the parallel-displaced
conformer (top), the lowest-energy collective fluctuation
corresponds to two aligned in-plane dipole fluctuations in the
monomers, whereas in the T-shaped conformer (bottom) the
corresponding collective mode comprises one in-plane and
one out-of-plane monomer fluctuation, the latter having a sub-
stantially lower polarizability. These observations are manifested
in the vdW interaction energies as well, which are reduced
by the higher-order many-body effects by 8% and 3% in the
parallel-displaced and T-shaped conformation, respectively. In
the supramolecular complex C1 (Fig. 4f), the fluctuations most
contributing to the binding correspond to dipole and quadrupole
oscillations spanning the whole complex. This can be related
to the standard London picture of pairwise dispersion, where
fluctuating dipoles on individual atoms are being correlated.
Figure 4f demonstrates that this view can be generalized to the
case of large complexes not via sum over the atom pairs,
but rather by considering collective fluctuating dipoles and
higher multipoles of the whole molecules, akin to wavelike dipole
fluctuations or plasmons in nanomaterials45. In this framework,
the destabilization by the many-body correlation effects with
respect to the second-order (pairwise) approximation can be
understood by considering the degrees of freedom of the
correlation. In the pairwise picture, the oscillations within each
atom pair are correlated independently, essentially resulting in an

‘overcorrelation’. In contrast, the collective fluctuation model
correlates all atomic dipole oscillations at once, allowing only for
a moderate amount of correlation. As the differences in the
degrees of freedom grow with the system size, the many-body
effects are more pronounced in the supramolecular complexes,
where they reduce the binding energies by as much as 16%,
or 6 kcal mol� 1, in the case of the buckyball catcher.

Trends across structural motifs. We have demonstrated how
collective charge fluctuations are responsible for binding in the
three studied supramolecular complexes, and that quantitative
models, which take this into account, provide accurate
predictions of the binding energies. The last part of our work
deals with two questions: (i) are these findings transferable to
other conjugated systems? (ii) Are they characteristic of con-
jugated systems? The magnitude of the binding and especially the
contribution of the higher-order many-body correlation effects is
a combined result of several factors including the degree of
symmetry of a system, its topology, compactness, and mutual
orientation of the host and the guest. To investigate whether our
model can account for these different factors, we have calculated
the binding energies of a set of conformations of the C70 fullerene
hosted in [N]cycloparaphenyleneacetylene rings, with N ranging
from 6 to 8 (see Fig. 5). The geometries were selected to cover a
spectrum of interaction motifs, ranging from tightly stacked to
open structures, and containing both symmetric as well as
distorted cases. The case of N¼ 6 was previously studied by Yuan
et al.46 but their focus was mostly on equilibrium structures. The
MBD binding energies are compared with the results of
DQMC as well as the TS method36, which is a reliable model
for vdW interactions in smaller systems and simple solids, but
neglects the higher-order correlation effects. As in the case of the
CPP-based complexes, MBD provides binding energies in
excellent agreement with DQMC, with the largest difference of
1.7 kcal mol� 1 (5%) and the mean absolute difference of
0.9 kcal mol� 1. Furthermore, there is no clear pattern in the
remaining small differences, suggesting that MBD treats the
various types of geometries included in the sample on an equal
footing. In contrast, the pairwise TS method in general overbinds,
with differences ranging from 2 to 13 kcal/mol. Part of this
overbinding can be attributed to the lack of short-range screening
in TS; however, most of the specific differences on individual
systems stem from the ‘overcorrelation’ introduced above. We
observe that these differences are largest in the tightly stacked
structures, resulting in the largest overbinding and a seeming
stability of these systems. With MBD and DQMC, on the other
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Figure 5 | Interaction energies of C70 in [N]cycloparaphenyleneacetylene (6rNr8). The sample was selected to cover a broad spectrum of

geometrical motifs and hence the individual geometries are not necessarily energy minima. However, all geometries are stationary points of the potential

energy surface. The energies are calculated with respect to relaxed fragments (see Supplementary Data 1). DQMC is the diffusion quantum Monte-Carlo

method (not given for system 7), whereas MBD and TS are the MBD model and TS method calculated on top of the PBE functional, respectively. D denotes

the energy difference between MBD and TS in kcal mol� 1. Numerical values are presented in Supplementary Table 2.
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hand, these structures are much closer in binding energy to the
more extended conformations.

Analysis of individual fluctuation modes. vdW interactions in
all materials are caused by correlation of charge fluctuations and
we have shown above that these fluctuations are non-local and
collective in the case of conjugated p�p systems. To investigate
whether such characteristics are specific to these systems, we have
analysed the fluctuation mode that contributes most to the total
binding energy in seven select complexes from the data sets
S12L23 and S8 (ref. 24; see Supplementary Figs 3 and 4), covering
all distinct types of bonding therein, which range from p�p
stacking (two ‘tweezer’ complexes, one ‘pincer’ complex and the
[10]CPP complex studied above) to hydrogen bonding, to
electrostatic interactions (a pseudorotaxane complex, an amide
macrocycle complex and a cucurbituril complex). The fluctuation
modes of a complex can be expanded in terms of the fluctuation
modes of the individual monomers with equation (10) (see
Supplementary Methods for details). A simple yet revealing
measure of the number of components of such an expansion is
the inverse of the largest expansion coefficient (as an example,
consider the expansion 1¼1

3þ 1
3þ 1

3, where this measure would
be 3). In the four conjugated supramolecular complexes, we find
this measure to be 2.3, 2.8, 3.0 and 4.4, whereas in the three
complexes with other types of bonding, we find 1.1, 1.1 and 1.7,
demonstrating that the modes in the former group are
significantly more collective. As an illustrative example, the
most contributing fluctuation mode in the p�p stacked ‘tweezer’
complex in Fig. 6a corresponds to a collective dipole-like
fluctuation, whereas it is mostly localized and unordered on the
guest molecule in the electrostatically bound cucurbituril complex
in Fig. 6b. In the latter case, the mode is strongly binding because
of its large polarizability and unspecific correlation with the
modes of the host molecule. Although performed on a limited
number of systems, these preliminary results already suggest that
the collective charge fluctuations indeed are characteristic of the
conjugated complexes.

Discussion
In previous works, collective charge fluctuations (molecular
plasmons47) have been discussed predominantly within the
context of solids and low-dimensional extended systems15–17.
Our findings show that they serve as a natural description of
long-range electron correlation in molecular systems, not only at
the asymptotic limit, but at equilibrium distances as well, and
furthermore that the corresponding models can be made fully
quantitative. We have demonstrated that using a relatively simple
Hamiltonian model for these fluctuations, one can: (i) calculate
binding energies of supramolecular complexes within chemical

accuracy with respect to high-level reference data, (ii) obtain both
quantitatively and spatially correct charge polarization due to
long-range electron correlation with respect to density-functional
calculations, and (iii) analyse and visualize the individual
fluctuations and their contributions to the total binding energy.

Two different models (TS and D3), which do not account for the
collective charge oscillations, are not capable of predicting binding
energies of a comparable accuracy. Our analysis also suggests that
such fluctuations are especially important in conjugated systems in
comparison with complexes with other types of bonding. One of
the main characteristics of aromatic systems is their relatively
narrow HOMO-LUMO gap, making them an interesting point on
the zero-gap to large-gap spectrum17,48. An essential property of
the dipole oscillators used in our model is that they are not point
dipoles, but rather have a natural width. This is crucial for
predicting accurate molecular polarizabilities, but also seems to
effectively provide the amount of delocalization in the molecular
response that is required to describe long-range electron
correlation in finite-gap systems such as those studied in this
work. The fully delocalized electrons that can be found in metallic
systems and that can lead to type-C non-additivity as classified by
Dobson49 are not explicitly accounted for by our model and this
challenge is currently the topic of our work.

Methods
Many-body dispersion. MBD18,19,50 models the electrons of each atom as a
harmonic oscillator with the static polarizability a0 and oscillation frequency
o¼ 4C6=3a2

0 calculated from the C6 dispersion coefficient. These parameters are
obtained from the electron density by scaling the corresponding free-atom values
with a ratio of the Hirshfeld volumes of the atoms in the molecule and free atoms,

a0 ¼ afree
0

V
V free

ð3Þ

The scaled atomic polarizabilities are then screened via the Dyson screening
equation using the short-range part of the dipole potential.

~a¼ a� aTsr~a ð4Þ
The resulting fully non-local polarizability ~a (see Supplementary Fig. 1) is then
contracted back to individual atoms. The polarizabilities obtained in this way are
then used as an input into the MBD Hamiltonian,

HMBD¼�
1
2

X
A

=2
xA
þ 1

2

X
A

o2
Ax

2
A þ

1
2

X
AB

oAoB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a0;A~a0;B

p
nATlr

ABnB ð5Þ

where nA¼
ffiffiffiffiffiffiffi
mA
p

rA �RAð Þ is the mass-weighted displacement of the
pseudoelectron on atom A from its equilibrium position RA, and Tlr is the
long-range part of the dipole potential. The solution is obtained by direct
diagonalization which is possible due to the biquadratic form of the Hamiltonian
and leads to the set of coupled fluctuation frequencies �oi and harmonic modes
�ni¼

P
A

CiAnA . The MBD energy is then given by a plasmon-pole formula

EMBD ¼
1
2

X
i

�oi �
3
2

X
A

oA ð6Þ

An alternative and fully equivalent formulation, which allows for expansion of the
energy in orders of the coupling, starting with the second order, is provided by the
random phase approximation,

EMBD¼�
X1
n¼2

� 1ð Þn

n

Z 1
0

du
2p

Tr ~aTð Þn½ � ð7Þ

The MBD charge densities are obtained from the correlated wavefunctions

cMBDj i�
Y

i

e�
1
2 �oi

�x2
i ð8Þ

as an expectation value of the charge density operator

r rð Þ¼ cMBDh j
X

A

qAd r�RAð Þ cMBDj i ð9Þ

where the charges are set to 1 and the effective masses of the pseudoelectrons then
follow from a0¼ q/mo2. The collective fluctuation modes �xi of the complex can be
expressed in terms of the modes �x1;i , �x2;i of its fragments via

�n¼C
C� 1

1
�n1

C� 1
2

�n2

� �
ð10Þ

All MBD calculations were performed with a standalone program available
in ref. 51.

a b

Figure 6 | The most binding fluctuation mode in two supramolecular

complexes. Only atoms where the magnitude of the dipole oscillation is

larger than 5% of the largest oscillation are shown. (a) Conjugated

‘tweezer’ complex. (b) Electrostatically bound cucurbituril complex.
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Diffusion quantum Monte Carlo. All DQMC energies presented in this work
were calculated using the CASINO programme52, employing relativistic
pseudopotentials53 with the locality approximation54 and the Slater–Jastrow trial
wave functions

CSJ ¼ D̂"D̂#eJ ð11Þ

where D̂" , D̂# are Slater determinants constructed from single-particle spin
orbitals representing the up and down electron-spin projections, respectively, and
eJ is the so-called Jastrow factor, which is an exponential of a sum of explicitly
correlated one- (electron–nucleus), two- (electron–electron) and three-body
(electron–electron–nucleus) terms. Single-particle orbitals were obtained from
local density approximation (LDA) plane-wave calculations performed with the
PWSCF program55 and expanded in terms of B-splines56. DQMC binding energies
have been computed with respect to the fragments separated by at least 10 Å, with
the residual binding energy of less than 0.6 kcal mol� 1 (estimated with MBD). This
procedure avoids the size-consistency problems of DQMC (Zen, A. et al., in
preparation).

DFT calculations. All DFT calculations were performed with the FHI-aims
program57 using the ‘tight’ settings for basis sets and real-space grids. FHI-aims is
an all-electron code with numerical basis sets. The Kohn–Sham self-consistent
cycle was converged to 10� 6 eV in energy and 10� 5 electrons in density.

Data availability. The authors declare that the data necessary for reproducing the
results of this study are available within the article and its Supplementary
Information files.
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