60 research outputs found

    Thermal acoustic excitations with atomic-scale wavelengths in amorphous silicon

    Get PDF
    The vibrational properties of glasses remain a topic of intense interest due to several unresolved puzzles, including the origin of the Boson peak and the mechanisms of thermal transport. Inelastic scattering measurements have revealed that amorphous solids support collective acoustic excitations with low THz frequencies despite the atomic disorder, but these frequencies are well below most of the thermal vibrational spectrum. Here, we report the observation of acoustic excitations with frequencies up to 10 THz in amorphous silicon. The excitations have atomic-scale wavelengths as short as 6 Å and exist well into the thermal vibrational frequencies. Simulations indicate that these high-frequency waves are supported due to the high group velocity and monatomic composition of a-Si, suggesting that other glasses with these characteristics may also exhibit such excitations. Our findings demonstrate that a substantial portion of thermal vibrational modes in amorphous materials can still be described as a phonon gas despite the lack of atomic order

    Spin correlations in the extended kagome system YBaCo3FeO7

    Get PDF
    The transition metal based oxide YBaCo3FeO7 is structurally related to the mineral Swedenborgite SbNaBe4O7, a polar non-centrosymmetric crystal system. The magnetic Co3Fe sublattice consists of a tetrahedral network containing kagome-like layers with trigonal interlayer sites. This geometry causes frustration effects for magnetic ordering, which were investigated by magnetization measurements, M\"ossbauer spectroscopy, polarized neutron diffraction, and neutron spectroscopy. Magnetization measurement and neutron diffraction do not show long range ordering even at low temperature (1 K) although a strong antiferromagnetic coupling (~2000 K) is deduced from the magnetic susceptibility. Below 590 K, we observe two features, a spontaneous weak anisotropic magnetization hysteresis along the polar crystallographic axis and a hyperfine field on the Fe kagome sites, whereas the Fe spins on the interlayer sites remain idle. Below ~50 K, the onset of a hyperfine field shows the development of moments static on the M\"ossbauer time scale also for the Fe interlayer sites. Simultaneously, an increase of spin correlations is found by polarized neutron diffraction. The relaxation part of the dynamic response has been further investigated by high-resolution neutron spectroscopy, which reveals that the spin correlations start to freeze in below ~50 K. Monte Carlo simulations show that the neutron scattering results at lower temperatures are compatible with a recent proposal that the particular geometric frustration in the Swedenborgite structure promotes quasi one dimensional partial order.Comment: 13 pages, 7 figure

    Magnetic and electronic properties of Eu\u3csub\u3e4\u3c/sub\u3eSr\u3csub\u3e4\u3c/sub\u3eGa\u3csub\u3e16\u3c/sub\u3eGe\u3csub\u3e30\u3c/sub\u3e

    Get PDF
    Magnetization, static and ac magnetic susceptibility, nuclear forward scattering, and electrical resistivity measurements have been performed on polycrystalline Eu4Sr4Ga16Ge30, a type I clathrate that has divalent strontium and europium ions encapsulated within a Ga-Ge framework. These data are compared with those of type I clathrates Eu8Ga16Ge30 and Eu6Sr2Ga16Ge30. The ferromagnetic ordering of these Eu-containing clathrates is substantially altered by the incorporation of strontium, as compared to Eu8Ga16Ge30. Ferromagnetism, accompanied by a relatively large negative magnetoresistance, is observed below 15 and 20 K in Eu4Sr4Ga16Ge30 and Eu6Sr2Ga16Ge30, respectively. An effective magnetic moment of 7.83 μB per Eu ion is observed above 30 K for Eu4Sr4Ga16Ge30, a moment which is close to the free-ion moment of 7.94 μB per europium(II) ion

    Direct Experimental Evidence for Atomic Tunneling of Europium in Crystalline Eu\u3csub\u3e8\u3c/sub\u3eGa\u3csub\u3e16\u3c/sub\u3eGe\u3csub\u3e30\u3c/sub\u3e

    Get PDF
    Mössbauer-effect and microwave absorption experimental evidence unambiguously demonstrates the presence of slow, ∼450  MHz, tunneling of magnetic europium between four equivalent sites in Eu8Ga16Ge30, a stoichiometric clathrate. Remarkably, six of the eight europium atoms, or 11% of the constituents in this solid, tunnel between these four sites separated by 0.55 Å. The off centering of the atoms or ions in crystalline clathrates appears to be a promising route for producing Rabi oscillators in solid-state materials

    Thermal acoustic excitations with atomic-scale wavelengths in amorphous silicon

    Get PDF
    The vibrational properties of glasses remain a topic of intense interest due to several unresolved puzzles, including the origin of the Boson peak and the mechanisms of thermal transport. Inelastic scattering measurements have revealed that amorphous solids support collective acoustic excitations with low THz frequencies despite the atomic disorder, but these frequencies are well below most of the thermal vibrational spectrum. Here, we report the observation of acoustic excitations with frequencies up to 10 THz in amorphous silicon. The excitations have atomic-scale wavelengths as short as 6 Å and exist well into the thermal vibrational frequencies. Simulations indicate that these high-frequency waves are supported due to the high group velocity and monatomic composition of a-Si, suggesting that other glasses with these characteristics may also exhibit such excitations. Our findings demonstrate that a substantial portion of thermal vibrational modes in amorphous materials can still be described as a phonon gas despite the lack of atomic order

    Validating First-Principles Phonon Lifetimes via Inelastic Neutron Scattering

    Full text link
    Phonon lifetimes are a key component of quasiparticle theories of transport, yet first-principles lifetimes are rarely directly compared to inelastic neutron scattering (INS) results. Existing comparisons show discrepancies even at temperatures where perturbation theory is expected to be reliable. In this work, we demonstrate that the reciprocal space voxel (qq-voxel), which is the finite region in reciprocal space required in INS data analysis, must be explicitly accounted for within theory in order to draw a meaningful comparison. We demonstrate accurate predictions of peak widths of the scattering function when accounting for the qq-voxel in CaF2_2 and ThO2_2. Passing this test implies high fidelity of the phonon interactions and the approximations used to compute the Green's function, serving as critical benchmark of theory, and indicating that other material properties should be accurately predicted; which we demonstrate for thermal conductivity

    Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mossbauer spectra

    Get PDF
    We present results from a detailed experimental investigation of LaFeAsO, the parent material in the series of "FeAs" based oxypnictide superconductors. Upon cooling this material undergoes a tetragonal-orthorhombic crystallographic phase transition at ~160 K followed closely by an antiferromagnetic ordering near 145 K. Analysis of these phase transitions using temperature dependent powder X-ray and neutron diffraction measurements is presented. A magnetic moment of ~0.35 Bohr magnetons per iron is derived from Mossbauer spectra in the low temperature phase. Evidence of the structural transition is observed at temperatures well above the structural transition (up to near 200 K) in the diffraction data as well as the polycrystalline elastic moduli probed by resonant ultrasound spectroscopy measurements. The effects of the two phase transitions on the transport properties (resistivity, thermal conductivity, Seebeck coefficient, Hall coefficient), heat capacity, and magnetization of LaFeAsO are also reported, including a dramatic increase in the magnitude of the Hall coefficient below 160 K. The results suggest that the structural distortion leads to a localization of carriers on Fe, producing small local magnetic moments which subsequently order antiferromagnetically upon further cooling. Evidence of strong electron-phonon interactions in the high-temperature tetragonal phase is also observed.Comment: Revised and expanded magnetization and Mossbauer spectroscopy section. Clarified sample preparation description. This paper contains some results from arXiv:0804.0796. 10 figure
    corecore