research

Thermal acoustic excitations with atomic-scale wavelengths in amorphous silicon

Abstract

The vibrational properties of glasses remain a topic of intense interest due to several unresolved puzzles, including the origin of the Boson peak and the mechanisms of thermal transport. Inelastic scattering measurements have revealed that amorphous solids support collective acoustic excitations with low THz frequencies despite the atomic disorder, but these frequencies are well below most of the thermal vibrational spectrum. Here, we report the observation of acoustic excitations with frequencies up to 10 THz in amorphous silicon. The excitations have atomic-scale wavelengths as short as 6 Å and exist well into the thermal vibrational frequencies. Simulations indicate that these high-frequency waves are supported due to the high group velocity and monatomic composition of a-Si, suggesting that other glasses with these characteristics may also exhibit such excitations. Our findings demonstrate that a substantial portion of thermal vibrational modes in amorphous materials can still be described as a phonon gas despite the lack of atomic order

    Similar works