116 research outputs found

    Відомості про авторів

    Get PDF
    OBJECTIVES: Movement in the magnetic fields around MRI systems showed acute negative effects on concentration, memory, visuo-spatial orientation and postural body sway. A crucial role of the vestibular system has been hypothesised. We aimed to gain more insight whether subjects with a relatively (un)sensitive vestibular system performed differently on cognitive tasks when (moving) in a the static magnetic field of an MRI scanner.\n\nMETHOD: In a double blind randomised cross over experiment 36 healthy volunteers underwent several cognitive tasks in 4 experimental sessions. Two were exposure conditions near a 7 Tesla (T) MRI system with personal exposure of 1.0 T. In one of these conditions additional time-varying magnetic fields of 2.4 T/s were induced by making standardised head movements. Of the two sham conditions (0 T) one was with and the other without such head movements. Vestibular sensitivity of each subject was assessed by the rotary chair test, the caloric reflex test and self-reported sensitivity to motion sickness.\n\nRESULTS: Linear mixed models are currently in progress to test cognitive performance in a magnetic field for subjects with a low, normal and high sensitive vestibular organ. Preliminary results seem to suggest some differential cognitive effects of magnetic field exposure according to relative vestibular sensitivity. Further results will be presented at the conference.\n\nCONCLUSIONS: These findings are important to better understand a possible working mechanism evoking these cognitive effects. Moreover, these finding can form a basis for the design of relevant protective and precautionary control measures for employees working close to an MRI system

    The Vestibular Implant: Quo Vadis?

    Get PDF
    Objective: To assess the progress of the development of the vestibular implant (VI) and its feasibility short-term. Data sources: A search was performed in Pubmed, Medline, and Embase. Key words used were “vestibular prosth*” and “VI.” The only search limit was language: English or Dutch. Additional sources were medical books, conference lectures and our personal experience with per-operative vestibular stimulation in patients selected for cochlear implantation. Study selection: All studies about the VI and related topics were included and evaluated by two reviewers. No study was excluded since every study investigated different aspects of the VI. Data extraction and synthesis: Data was extracted by the first author from selected reports, supplemented by additional information, medical books conference lectures. Since each study had its own point of interest with its own outcomes, it was not possible to compare data of different studies. Conclusion: To use a basic VI in humans seems feasible in the very near future. Investigations show that electric stimulation of the canal nerves induces a nystagmus which corresponds to the plane of the canal which is innervated by the stimulated nerve branch. The brain is able to adapt to a higher baseline stimulation, while still reacting on a dynamic component. The best response will be achieved by a combination of the optimal stimulus (stimulus profile, stimulus location, precompensation), complemented by central vestibular adaptation. The degree of response will probably vary between individuals, depending on pathology and their ability to adapt

    Heterogeneity in Reported Outcome Measures after Surgery in Superior Canal Dehiscence Syndrome—A Systematic Literature Review

    Get PDF
    BackgroundSuperior canal dehiscence syndrome (SCDS) can be treated surgically in patients with incapacitating symptoms. However, the ideal treatment has not been determined.ObjectivesThis systematic literature review aims to assess available evidence on the comparative effectiveness and risks of different surgical treatments regarding: (1) symptom improvement; (2) objectively measurable auditory and vestibular function; (3) adverse effects, and (4) length of hospitalization.Search method and data sourcesA systematic database search according to PRISMA statement was conducted on Pubmed, Embase, and Cochrane library. In addition, reference lists were searched. No correspondence with the authors was established. The last search was conducted on June 9, 2017.Study eligibility criteriaRetrospective and prospective cohort studies were held applicable under the condition that they investigated the association between a surgical treatment method and the relief of vestibular and/or auditory symptoms. Only studies including quantitative assessment of the pre- to postoperative success rate of a surgical treatment method were included. Case reports, reviews, meta-analysis, and studies not published in English, Dutch, or German were excluded.Data collection and analysisThe first author searched literature and extracted data; the first and last analyzed the data.Main resultsSeventeen studies (354 participants, 367 dehiscences) met the eligibility criteria and were grouped according to surgical approach. Seven combinations of surgical approaches and methods for addressing the dehiscence were identified: plugging, resurfacing, or a combination of both through the middle fossa (middle fossa approach); plugging, resurfacing, or a combination of both through the mastoid (transmastoid approach); round window reinforcement through the ear canal (transcanal approach). Several studies showed high internal validity, but quality was often downgraded due to study design (1). Outcome measures and timing of postsurgical assessment varied among studies, making it unfeasible to pool data to perform a meta-analysis.ConclusionA standardized protocol including outcome measures and timeframes is needed to compare the effectiveness and safety SCDS treatments. It should include symptom severity assessments and changes in vestibular and auditory function before and after treatment

    Biomechanical assessment of the effects of decompressive surgery in non-chondrodystrophic and chondrodystrophic canine multisegmented lumbar spines

    Get PDF
    Purpose Dogs are often used as an animal model in spinal research, but consideration should be given to the breed used as chondrodystrophic (CD) dog breeds always develop IVD degeneration at an early age, whereas nonchondrodystrophic (NCD) dog breeds may develop IVD degeneration, but only later in life. The aim of this study was to provide a mechanical characterization of the NCD [non-degenerated intervertebral discs (IVDs), rich in notochordal cells] and CD (degenerated IVDs, rich in chondrocyte-like cells) canine spine before and after decompressive surgery (nucleotomy). Methods The biomechanical properties of multisegmented lumbar spine specimens (T13-L5 and L5-Cd1) from 2-year-old NCD dogs (healthy) and CD dogs (early degeneration) were investigated in flexion/extension (FE), lateral bending (LB), and axial rotation (AR), in the native state and after nucleotomy of L2-L3 or dorsal laminectomy and nucleotomy of L7-S1. The range of motion (ROM), neutral zone (NZ), and NZ stiffness (NZS) of L1-L2, L2- L3, L6-L7, and L7-S1 were calculated. Results In native spines in both dog groups, the greatest mobility in FE was found at L7-S1, and the greatest mobility in LB at L2-L3. Surgery significantly increased the ROM and NZ, and significantly decreased the NZS in FE, LB, and AR in both breed groups. However, surgery at L2-L3 resulted in a significantly larger increase in NZ and decrease in NZS in the CD spines compared with the NCD spines, whereas surgery at L7-S1 induced a significantly larger increase in ROM and decrease in NZS in the NCD spines compared with the CD spines. Conclusions Spinal biomechanics significantly differ between NCD and CD dogs and researchers should consider this aspect when using the dog as a model for spinal research. © Springer-Verlag 2012

    Discussion about Visual Dependence in Balance Control: European Society for Clinical Evaluation of Balance Disorders

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked FilesThe executive committee of the European Society for the clinical evaluation of balance disorders meets annually to address equilibrium problems that are not well understood. This is a review paper on discussions in the latest meeting we held. MATERIALS AND METHODS: Seeing patients with vestibular disorders who end up depending on visual information as part of their compensation process is a common clinical occurrence. However, this "visual dependence" can generate symptoms, which include nausea, sensations of imbalance, and anxiety. It is unclear how this develops, as symptoms can be widely variable from patient to patient. There are several triggering factors to this symptom set, and quantifying it in a given patient is extremely difficult Results: The committee agreed that the presence of this symptom set can be suggestive of vestibular pathology, but the pathology does not have to be present. As a result, there is no correlation between symptom severity and test results. CONCLUSION: Visual dependence can often be present in a patient, although little, if any, measurable pathology is present. It is important to emphasize that although we cannot accurately measure this with either standardized testing or pertinent questionnaires, "hypersensitive" patients have a genuine disease and their symptoms are not of psychiatric origin

    Drafting a Surgical Procedure Using a Computational Anatomy Driven Approach for Precise, Robust, and Safe Vestibular Neuroprosthesis Placement-When One Size Does Not Fit All

    Get PDF
    OBJECTIVE: To design and evaluate a new vestibular implant and surgical procedure that should reach correct electrode placement in 95% of patients in silico. DESIGN: Computational anatomy driven implant and surgery design study. SETTING: Tertiary referral center. PARTICIPANTS: The population comprised 81 patients that had undergone a CT scan of the Mastoid region in the Maastricht University Medical Center. The population was subdivided in a vestibular implant eligible group (28) and a control group (53) without known vestibular loss. INTERVENTIONS: Canal lengths and relationships between landmarks were calculated for every patient. The relationships in group-anatomy were used to model a fenestration site on all three semicircular canals. Each patient's simulated individual distance from the fenestration site to the ampulla was calculated and compared with the populations average to determine if placement would be successful. MAIN OUTCOME MEASURES: Lengths of the semicircular canals, distances from fenestration site to ampulla (intralabyrinthine electrode length), and rate of successful electrode placement (robustness). RESULTS: The canal lengths for the lateral, posterior, and superior canal were respectively 12.1 mm ± 1.07, 18.8 mm ± 1.62, and 17.5 mm ± 1.23, the distances from electrode fenestration site to the ampulla were respectively 3.73 mm ± 0.53, 9.02 mm ± 0.90, and 5.31 mm ± 0.73 and electrode insertions were successful for each respective semicircular canal in 92.6%, 66.7%, and 86.4% of insertions in silico. The implant electrode was subsequently revised to include two more electrodes per lead, resulting in a robustness of 100%. CONCLUSIONS: The computational anatomy approach can be used to design and test surgical procedures. With small changes in electrode design, the proposed surgical procedure's target robustness was reached

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic

    Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation

    Get PDF
    Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level

    Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning.</p> <p>Methods</p> <p>A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007).</p> <p>Results</p> <p>One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training). Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems.</p> <p>Conclusion</p> <p>This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re) learning of motor skills.</p

    Ocular Vestibular Evoked Myogenic Potentials

    No full text
    Introduction&#8195; Diagnostic testing of the vestibular system is an essential component of treating patients with balance dysfunction. Until recently, testing methods primarily evaluated the integrity of the horizontal semicircular canal, which is only a portion of the vestibular system. Recent advances in technology have afforded clinicians the ability to assess otolith function through vestibular evoked myogenic potential (VEMP) testing. VEMP testing from the inferior extraocular muscles of the eye has been the subject of interest of recent research. Objective&#8195; To summarize recent developments in ocular VEMP testing. Results&#8195; Recent studies suggest that the ocular VEMP is produced by otolith afferents in the superior division of the vestibular nerve. The ocular VEMP is a short latency potential, composed of extraocular myogenic responses activated by sound stimulation and registered by surface electromyography via ipsilateral otolithic and contralateral extraocular muscle activation. The inferior oblique muscle is the most superficial of the six extraocular muscles responsible for eye movement. Therefore, measurement of ocular VEMPs can be performed easily by using surface electrodes on the skin below the eyes contralateral to the stimulated side. Conclusion&#8195; This new variation of the VEMP procedure may supplement conventional testing in difficult to test populations. It may also be possible to use this technique to evaluate previously inaccessible information on the vestibular system
    corecore