2,325 research outputs found

    Epstein-Barr Virus and p16INK4A Methylation in Squamous Cell Carcinoma and Precancerous Lesions of the Cervix Uteri

    Get PDF
    Methylation of p16 is an important mechanism in cervical carcinogenesis. However, the relationship between cervical squamous cell carcinoma (SCC) and Epstein-Barr virus (EBV) remains controversial. Here, we explored whether EBV infection and/or p16 gene inactivation would play any role in cervical carcinogenesis. Eighty-two specimens included 41 invasive SCCs, 30 cervical intraepithelial neoplasm (CIN; CIN 1, 11 cases, CIN II, 3 cases, CIN III 16 cases) and 11 nonneoplastic cervices. EBV was detected by polymerase chain reaction (PCR) for EBNA-1 and in situ hybridization for EBER-1. The p16 methylation-status and the expression of p16 protein were studied by methylation-specific PCR and immunohistochemistry, respectively. The materials were divided into four groups: 1) nonneoplastic cervices, 2) CIN I, 3) CIN II-III and 4) invasive SCCs. p16 methylation and p16 immunoexpressions increased in CIN and invasive SCCs than nonneoplastic tissue. p16-methylation and p16-immunoreactivities were higher in the EBV-positive group (p=0.009, p<0.001) than in the EBV-negative group. EBV was detected more frequently in CIN and SCCs than nonneoplastic cervices. In conclusion, a correlation between p16 methylation, p16 immunoreactivity and the detection of EBV strongly suggested that the cooperation of EBV and p16 gene may play a synergic effect on cell cycle deregulation

    Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    Get PDF
    BACKGROUND: Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. METHODS: OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. RESULTS: Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. CONCLUSIONS: Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer

    Promoter Methylation of E-cadherin in Hepatocellular Carcinomas and Dysplastic Nodules

    Get PDF
    In order to clarify the significance of E-cadherin methylation in multistep hepatocarcinogenesis, we examined the methylation status of the E-cadherin promoter region, using methylation-specific polymerase chain reaction in 64 hepatocellular carcinomas (HCCs) and 13 dysplastic nodules (DNs), and correlated these results with E-cadherin protein expression and clinicopathologic factors of HCCs. Promoter methylation was detected in 1 of 13 (7.7%) DNs, in 5 of 13 (38.5%) Edmondson and Steiner grade I HCCs, and in 27 of 51 (52.9%) grade II or III HCCs, and a significant correlation was observed between the methylation status and the stepwise progression of hepatocarcinogenesis (p=0.004). Reduced E-cadherin immunoreactivity was found in 18 of 64 (28%) HCCs, but in none of DNs. E-cadherin methylation status in HCCs was significantly correlated with microvascular invasion (p=0.02) and tumor recurrence (p=0.04), but not with reduced E-cadherin immunoreactivity. The Kaplan-Meier method showed that methylation status did not have a significant influence on the recurrence-free survival of HCC patients (p=0.15). Our results indicate that methylation of the E-cadherin promoter region is a frequent event in HCC, which may play an important role in the stepwise progression of hepatocarcinogenesis. And the promoter methylation of E-cadherin in HCC was found to be significantly correlated with microvascular invasion and recurrence

    PRACTICAL METHOD FOR ESTIMATING NEUTRON CROSS SECTION COVARIANCES IN THE RESONANCE REGION

    Get PDF
    Recent evaluations of neutron cross section covariances in the resolved resonance region reveal the need for further research in this area. Major issues include declining uncertainties in multigroup representations and proper treatment of scattering radius uncertainty. To address these issues, the present work introduces a practical method based on kernel approximation using resonance parameter uncertainties from the Atlas of Neutron Resonances. Analytical expressions derived for average cross sections in broader energy bins along with their sensitivities provide transparent tool for determining cross section uncertainties. The role of resonance-resonance and bin-bin correlations is specifically studied. As an example we apply this approach to estimate (n,{gamma}) and (n,el) covariances for the structural material {sup 55}Mn

    Extension of the Empire Code to the Resonance Region

    Get PDF
    The preliminary version of a new module has been developed to be added to a nuclear reaction model code EMPIRE to allow for an evaluation of neutron cross sections in a resonance region. It automates most of the evaluation procedures and can be executed within EMPIRE or as a stand-alone program. The module includes a graphic user interface (GUI) and a number of codes and scripts that read individual, as well as average, resonance parameters from the Atlas of Neutron Resonances and other physical constants from RIPL-2, perform an analysis of the available resonances, carry out statistical distributions, and compute cross sections in resolved and unresolved resonance regions which are then compared with experimental data. The module also provides an ENDF-formatted file for a resonance region and various plots allowing for a verification of the procedure. The formatted file can be integrated later into the final ENDF-6 file as generated by the EMPIRE code. However, as a preliminary version, extensive testing and further improvements are needed before this new capability can be incorporated into the production version of EMPIRE

    LINE-1 methylation patterns of different loci in normal and cancerous cells

    Get PDF
    This study evaluated methylation patterns of long interspersed nuclear element-1 (LINE-1) sequences from 17 loci in several cell types, including squamous cell cancer cell lines, normal oral epithelium (NOE), white blood cells and head and neck squamous cell cancers (HNSCC). Although sequences of each LINE-1 are homologous, LINE-1 methylation levels at each locus are different. Moreover, some loci demonstrate the different methylation levels between normal tissue types. Interestingly, in some chromosomal regions, wider ranges of LINE-1 methylation levels were observed. In cancerous cells, the methylation levels of most LINE-1 loci demonstrated a positive correlation with each other and with the genome-wide levels. Therefore, the loss of genome-wide methylation in cancerous cells occurs as a generalized process. However, different LINE-1 loci showed different incidences of HNSCC hypomethylation, which is a lower methylation level than NOE. Additionally, we report a closer direct association between two LINE-1s in different EPHA3 introns. Finally, hypermethylation of some LINE-1s can be found sporadically in cancer. In conclusion, even though the global hypomethylation process that occurs in cancerous cells can generally deplete LINE-1 methylation levels, LINE-1 methylation can be influenced differentially depending on where the particular sequences are located in the genome

    Relationship Between the Extent of Chromosomal Losses and the Pattern of CpG Methylation in Gastric Carcinomas

    Get PDF
    The extent of unilateral chromosomal losses and the presence of microsatellite instability (MSI) have been classified into high-risk (high- and baseline-level loss) and low-risk (low-level loss and MSI) stem-line genotypes in gastric carcinomas. A unilateral genome-dosage reduction might stimulate compensation mechanism, which maintains the genomic dosage via CpG hypomethylation. A total of 120 tumor sites from 40 gastric carcinomas were examined by chromosomal loss analysis using 40 microsatellite markers on 8 chromosomes and methylation analysis in the 13 CpG (island/non-island) regions near the 10 genes using the bisulfite-modified DNAs. The high-level-loss tumor (four or more losses) showed a tendency toward unmethylation in the Maspin, CAGE, MAGE-A2 and RABGEF1 genes, and the other microsatellite-genotype (three or fewer losses and MSI) toward methylation in the p16, hMLH1, RASSF1A, and Cyclin D2 genes (p<0.05). The non-island CpGs of the p16 and hMLH1 genes were hypomethylated in the high-level-loss and hypermethylated in the non-high-level-loss sites (p<0.05). Consequently, hypomethylation changes were related to a high-level loss, whereas the hypermethylation changes were accompanied by a baseline-level loss, a low-level loss, or a MSI. This indicates that hypomethylation compensates the chromosomal losses in the process of tumor progression

    An Upgraded, Highly Saturated Linkage Map of Japanese Plum (Prunus salicina Lindl.), and Identification of a New Major Locus Controlling the Flavan-3-ol Composition in Fruits

    Get PDF
    Japanese plum fruits are rich in phenolic compounds, such as anthocyanins and flavan-3-ols, whose contents vary significantly among cultivars. Catechin (C) and epicatechin (EC) are flavan-3-ol monomers described in the fruits of this species and are associated with bitterness, astringency, antioxidant capacity, and susceptibility to enzymatic mesocarp browning. In this study, we aimed to identify quantitative trait loci (QTL) associated with the content of flavan-3-ol in Japanese plum fruits. We evaluated the content of C and EC in the mesocarp and exocarp of samples from 79 and 64 seedlings of an F1 progeny () in the first and second seasons, respectively. We also constructed improved versions of linkage maps from ‘98–99’ and ‘Angeleno,’ presently called single-nucleotide polymorphisms (SNPs) after mapping the already available GBS reads to Prunus salicina Lindl. cv. ‘Sanyueli’ v2.0 reference genome. These data allowed for describing a cluster of QTLs in the cultivar, ‘Angeleno,’ associated with the flavan-3-ol composition of mesocarp and exocarp, which explain up to 100% of the C/EC ratio. Additionally, we developed a C/EC metabolic marker, which was mapped between the markers with the highest log of odds (LOD) scores detected by the QTL analysis. The C/EC locus was located in the LG1, at an interval spanning 0.70 cM at 108.30–108.90 cM. Our results suggest the presence of a novel major gene controlling the preferential synthesis of C or EC in the Japanese plum fruits. This study is a significant advance in understanding the regulation of synthesizing compounds associated with fruit quality, postharvest, and human health promotion.This study has been funded by the National Agency of Research and Development (ANID)/the Scholarship Program/BECAS DE DOCTORADO NACIONAL/2020 – 21200330; Fondecyt Regular No. 1191446; Fondecyt Iniciación No. 11150662; Fondecyt Regular No. 1200718; FONDEF Project IT17I0069 Sweet Pekeetah: “un modelo tecnológico- comercial para una nueva variedad chilena de fruta”. JS was supported by the Ministry of Science and Innovation of Spain through the Juan de la Cierva incorporation contract (IJC2018-036623-I
    corecore