271 research outputs found
Nifedipine in the treatment of unstable angina, coronary spasm and myocardial ischemia
The effects of nifedipine, a potent calcium antagonist, were studied in patients with unstable angina, coronary spasm and myocardial ischemia. Data from two separ
Geometrical statistics of the vorticity vector and the strain rate tensor in rotating turbulence
We report results on the geometrical statistics of the vorticity vector
obtained from experiments in electromagnetically forced rotating turbulence. A
range of rotation rates is considered, from non-rotating to rapidly
rotating turbulence with a maximum background rotation rate of rad/s
(with Rossby number much smaller than unity). Typically, in our experiments
. The measurement volume is located in the
centre of the fluid container above the bottom boundary layer, where the
turbulent flow can be considered locally statistically isotropic and
horizontally homogeneous for the non-rotating case, see van Bokhoven et al.,
Phys. Fluids 21, 096601 (2009). Based on the full set of velocity derivatives,
measured in a Lagrangian way by 3D Particle Tracking Velocimetry, we have been
able to quantify statistically the effect of system rotation on several flow
properties. The experimental results show how the turbulence evolves from
almost isotropic 3D turbulence ( rad/s) to quasi-2D
turbulence ( rad/s) and how this is reflected by several
statistical quantities. In particular, we have studied the orientation of the
vorticity vector with respect to the three eigenvectors of the local strain
rate tensor and with respect to the vortex stretching vector. Additionally, we
have quantified the role of system rotation on the self-amplification terms of
the enstrophy and strain rate equations and the direct contribution of the
background rotation on these evolution equations. The main effect is the strong
reduction of extreme events and related (strong) reduction of the skewness of
PDFs of several quantities such as, for example, the intermediate eigenvalue of
the strain rate tensor and the enstrophy self-amplification term.Comment: 17 pages, 6 figures, 3 table
The Giant Inflaton
We investigate a new mechanism for realizing slow roll inflation in string
theory, based on the dynamics of p anti-D3 branes in a class of mildly warped
flux compactifications. Attracted to the bottom of a warped conifold throat,
the anti-branes then cluster due to a novel mechanism wherein the background
flux polarizes in an attempt to screen them. Once they are sufficiently close,
the M units of flux cause the anti-branes to expand into a fuzzy NS5-brane,
which for rather generic choices of p/M will unwrap around the geometry,
decaying into D3-branes via a classical process. We find that the effective
potential governing this evolution possesses several epochs that can
potentially support slow-roll inflation, provided the process can be arranged
to take place at a high enough energy scale, of about one or two orders of
magnitude below the Planck energy; this scale, however, lies just outside the
bounds of our approximations.Comment: 31 pages, 4 figures, LaTeX. v2: references added, typos fixe
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade
We provide a framework for analyzing the problem of interacting electrons in
a ballistic quantum dot with chaotic boundary conditions within an energy
(the Thouless energy) of the Fermi energy. Within this window we show that the
interactions can be characterized by Landau Fermi liquid parameters. When ,
the dimensionless conductance of the dot, is large, we find that the disordered
interacting problem can be solved in a saddle-point approximation which becomes
exact as (as in a large-N theory). The infinite theory shows a
transition to a strong-coupling phase characterized by the same order parameter
as in the Pomeranchuk transition in clean systems (a spontaneous
interaction-induced Fermi surface distortion), but smeared and pinned by
disorder. At finite , the two phases and critical point evolve into three
regimes in the plane -- weak- and strong-coupling regimes separated
by crossover lines from a quantum-critical regime controlled by the quantum
critical point. In the strong-coupling and quantum-critical regions, the
quasiparticle acquires a width of the same order as the level spacing
within a few 's of the Fermi energy due to coupling to collective
excitations. In the strong coupling regime if is odd, the dot will (if
isolated) cross over from the orthogonal to unitary ensemble for an
exponentially small external flux, or will (if strongly coupled to leads) break
time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we
are treating charge-channel instabilities in spinful systems, leaving
spin-channel instabilities for future work. No substantive results are
change
Inter- and Intra-Observer Variability and the Effect of Experience in Cine-MRI for Adhesion Detection
Cine-MRI for adhesion detection is a promising novel modality that can help the large group of patients developing pain after abdominal surgery. Few studies into its diagnostic accuracy are available, and none address observer variability. This retrospective study explores the inter- and intra-observer variability, diagnostic accuracy, and the effect of experience. A total of 15 observers with a variety of experience reviewed 61 sagittal cine-MRI slices, placing box annotations with a confidence score at locations suspect for adhesions. Five observers reviewed the slices again one year later. Inter- and intra-observer variability are quantified using Fleiss’ (inter) and Cohen’s (intra) κ and percentage agreement. Diagnostic accuracy is quantified with receiver operating characteristic (ROC) analysis based on a consensus standard. Inter-observer Fleiss’ κ values range from 0.04 to 0.34, showing poor to fair agreement. High general and cine-MRI experience led to significantly (p < 0.001) better agreement among observers. The intra-observer results show Cohen’s κ values between 0.37 and 0.53 for all observers, except one with a low κ of −0.11. Group AUC scores lie between 0.66 and 0.72, with individual observers reaching 0.78. This study confirms that cine-MRI can diagnose adhesions, with respect to a radiologist consensus panel and shows that experience improves reading cine-MRI. Observers without specific experience adapt to this modality quickly after a short online tutorial. Observer agreement is fair at best and area under the receiver operating characteristic curve (AUC) scores leave room for improvement. Consistently interpreting this novel modality needs further research, for instance, by developing reporting guidelines or artificial intelligence-based methods.</p
The clinical spectrum of limb girdle muscular dystrophy. A survey in the Netherlands
A cross-sectional study was performed in the Netherlands to define the clinical characteristics of the various subtypes within the broad and heterogeneous entity of limb girdle muscular dystrophy (LGMD). An attempt was made to include all known cases of LGMD in the Netherlands. Out of the reported 200 patients, 105 who fulfilled strictly defined criteria were included. Forty-nine patients, mostly suffering from dystrophinopathies and facioscapulohumeral muscular dystrophy, appeared to be misdiagnosed. Thirty-four cases were sporadic, 42 patients came from autosomal recessive and 29 from autosomal dominant families. The estimated prevalence of LGMD in the Netherlands was at least 8.1 x 10-6. The clinical features of the autosomal recessive and sporadic cases were indistinguishable from those of the autosomal dominant patients, although half hypertrophy was seen more frequently, and the course of the disease was more severe in autosomal recessive and sporadic cases. The pectoralis, iliopsoas and gluteal muscles, hip adductors and hamstrings were the most affected muscles. Distal muscle involvement occurred late in the course of the disease. Facial weakness was a rare phenomenon. The severity of the clinical picture was correlated with a deteriorating lung function. All autosomal dominantly inherited cases showed a mild course, although in two families life-expectancy was reduced because of concomitant cardiac involvement
Control of Spatial-Temporal Congested Traffic Patterns at Highway Bottlenecks
A microscopic theory of control of spatial-temporal congested traffic pattern
at freeway bottlenecks is presented. Based on empirical spatial-temporal
features of congested patterns at freeway bottlenecks which have recently been
found, different control strategies for prevention or reducing of the patterns
are simulated and compared. The studied control strategies include the on-ramp
metering with feedback and automatic cruise control (ACC) vehicles. A recent
microscopic traffic flow model within the author's three-phase traffic theory
is used for validation of spatial-temporal congested pattern control.Comment: 19 pages, 7 figure
ϒ production in p–Pb collisions at √sNN=8.16 TeV
ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio
(Anti-)deuteron production in pp collisions at 1as=13TeV
The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
- …