26 research outputs found

    Quality and quantity: transitions in antimicrobial gland use for parasite defense

    Get PDF
    Parasites are a major force in evolution, and understanding how host life history affects parasite pressure and investment in disease resistance is a general problem in evolutionary biology. The threat of disease may be especially strong in social animals, and ants have evolved the unique metapleural gland (MG), which in many taxa produce antimicrobial compounds that have been argued to have been a key to their ecological success. However, the importance of the MG in the disease resistance of individual ants across ant taxa has not been examined directly. We investigate experimentally the importance of the MG for disease resistance in the fungus-growing ants, a group in which there is interspecific variation in MG size and which has distinct transitions in life history. We find that more derived taxa rely more on the MG for disease resistance than more basal taxa and that there are a series of evolutionary transitions in the quality, quantity, and usage of the MG secretions, which correlate with transitions in life history. These shifts show how even small clades can exhibit substantial transitions in disease resistance investment, demonstrating that host–parasite relationships can be very dynamic and that targeted experimental, as well as large-scale, comparative studies can be valuable for identifying evolutionary transitions

    Dynamics of Mask Use as a Prevention Strategy against SARS-CoV-2 in Panama.

    Get PDF
    Early in the SARS-CoV-2 pandemic, many national public health authorities implemented non-pharmaceutical interventions to mitigate disease outbreaks. Panamá established mandatory mask use two months after its first documented case. Initial compliance was high, but diverse masks were used in public areas. We studied behavioral dynamics of mask use through the first two COVID-19 waves in Panama, to improve the implementation of effective, low-cost public health containment measures when populations are exposed to novel air-borne pathogens. Mask use behavior was recorded from pedestrians in four Panamanian populations (August to December 2020). We recorded facial coverings and if used, the type of mask, and gender and estimated age of the wearer. Our results showed that people were highly compliant (>95%) with mask mandates and demonstrated important population-level behaviors: (1) decreasing use of cloth masks over time, and increasing use of surgical masks; (2) mask use was 3-fold lower in suburban neighborhoods than other public areas and (3) young people were least likely to wear masks. Results help focus on highly effective, low-cost, public health interventions for managing and controlling a pandemic. Considerations of behavioral preferences for different masks, relative to pricing and availability, are essential for optimizing public health policies. Policies to increase the availability of effective masks, and behavioral nudges to increase acceptance, and to facilitate mask usage, during the ongoing SARS-CoV-2 pandemic, and for future pandemics of respiratory pathogens, are key tools, especially for nations lagging in access to expensive vaccines and pharmacological approaches

    Social life and sanitary risks: Evolutionary and current ecological conditions determine waste management in leaf-cutting ants

    No full text
    Adequate waste management is vital for the success of social life, because waste accumulation increases sanitary risks in dense societies. We explored why different leaf-cutting ants (LCA) species locate their waste in internal nest chambers or external piles, including ecological context and accounting for phylogenetic relations. We propose that waste location depends on whether the environmental conditions enhance or reduce the risk of infection. We obtained the geographical range, habitat and refuse location of LCA from published literature, and experimentally determined whether pathogens on ant waste survived to the high soil temperatures typical of xeric habitats. The habitat of the LCA determined waste location after phylogenetic correction: species with external waste piles mainly occur in xeric environments, whereas those with internalwaste chambers mainly inhabit more humid habitats. The ancestral reconstruction suggests that dumping waste externally is less derived than digging waste nest chambers. Empirical results showed that high soil surface temperatures reduce pathogen prevalence from LCA waste. We proposed that LCA living in environments unfavourable for pathogens (i.e. xeric habitats) avoid digging costs by dumping the refuse above ground. Conversely, in environments suitable for pathogens, LCA species prevent the spread of diseases by storing waste underground, presumably, a behaviour that contributed to the colonization of humid habitats. These results highlight the adaptation of organisms to the hygienic challenges of social living, and illustrate how sanitary behaviours can result from a combination of evolutionary history and current environmental conditions.Fil: Farji Brener, Alejandro Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Elizalde, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Fernández Marín, Hermógenes. Centro de Biodiversidad y Descrubrimiento de Drogas; PanamáFil: Amador Vargas, Sabrina. Smithsonian Tropical Research Institute; Panam

    Active use of the metapleural glands by ants in controlling fungal infection

    No full text
    Insect societies face constant challenges from disease agents. Ants deploy diverse antimicrobial compounds against pathogens and the key sources are metapleural glands (MGs). Are MG products passively secreted and used indiscriminately or are they selectively used when ants are challenged by pathogens? In 26 species from five subfamilies, ants use foreleg movements to precisely groom the MG opening. In the absence of experimental infection, MG grooming rates are low and workers groom themselves after contacting the MGs. The derived leaf-cutter ants (Atta and Acromyrmex) also groom their fungal gardens, substrata (leaves), queens and nest-mates after MG grooming. Atta respond to a challenge by fungal conidia by increasing the rate of MG grooming, but do not do so when an inert powder is applied. This increase occurs in the first hour after a potential infection, after which it returns to baseline levels. Ants with open MGs produce more infrabuccal pellets (IP) than ants with sealed MGs and conidia within pellets from the former are less likely to germinate. Thus, ants selectively groom their MGs when disease agents are present, suggesting that they also selectively use their MG secretions, which has important implications for understanding the evolution of hygienic behaviour in social groups

    Hygiene Defense Behaviors Used by a Fungus-Growing Ant Depend on the Fungal Pathogen Stages

    No full text
    Parasites and their hosts use different strategies to overcome the defenses of the other, often resulting in an evolutionary arms race. Limited animal studies have explored the differential responses of hosts when challenged by differential parasite loads and different developmental stages of a parasite. The fungus-growing ant Trachymyrmex sp. 10 employs three different hygienic strategies to control fungal pathogens: Grooming the antibiotic-producing metapleural glands (MGs) and planting or weeding their mutualistic fungal crop. By inoculating Trachymyrmex colonies with different parasite concentrations (Metarhizium) or stages (germinated conidia or ungermianted conidia of Metarhizium and Escovopsis), we tested whether ants modulate and change hygienic strategies depending on the nature of the parasite challenge. There was no effect of the concentration of parasite on the frequencies of the defensive behaviors, indicating that the ants did not change defensive strategy according to the level of threat. However, when challenged with conidia of Escovopsis sp. and Metarhizium brunneum that were germinated or not-germinated, the ants adjusted their thygienic behavior to fungal planting and MG grooming behaviors using strategies depending on the conidia germination status. Our study suggests that fungus-growing ants can adjust the use of hygienic strategies based on the nature of the parasites

    Data from: An evaluation of the possible adaptive function of fungal brood covering by attine ants

    No full text
    Fungus-growing ants (Myrmicinae: Attini) live in an obligate symbiotic relationship with a fungus that they rear for food, but they can also use the fungal mycelium to cover their brood. We surveyed colonies from 20 species of fungus-growing ants and show that brood-covering behavior occurs in most species, but to varying degrees, and appears to have evolved shortly after the origin of fungus-farming, but was partly or entirely abandoned in some genera. To understand the evolution of the trait we used quantitative phylogenetic analyses to test whether brood covering behavior covaries among attine ant clades and with two hygienic traits that reduce risk of disease: mycelial brood cover did not correlate with mutualistic bacteria that the ants culture on their cuticles for their antibiotics, but there was a negative relationship between metapleural gland grooming and mycelial cover. A broader comparative survey showed that the pupae of many ant species have protective cocoons but that those in the subfamily Myrmicinae do not. We therefore evaluated the previously proposed hypothesis that mycelial covering of attine ant brood evolved to provide cocoon-like protection for the brood

    Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants

    No full text
    To combat disease, most fungus-growing ants (Attini) use antibiotics from mutualistic bacteria (Pseudonocardia) that are cultured on the ants' exoskeletons and chemical cocktails from exocrine glands, especially the metapleural glands (MG). Previous work has hypothesized that (i) Pseudonocardia antibiotics are narrow-spectrum and control a fungus (Escovopsis) that parasitizes the ants' fungal symbiont, and (ii) MG secretions have broad-spectrum activity and protect ants and brood. We assessed the relative importance of these lines of defence, and their activity spectra, by scoring abundance of visible Pseudonocardia for nine species from five genera and measuring rates of MG grooming after challenging ants with disease agents of differing virulence. Atta and Sericomyrmex have lost or greatly reduced the abundance of visible bacteria. When challenged with diverse disease agents, including Escovopsis, they significantly increased MG grooming rates and expanded the range of targets. By contrast, species of Acromyrmex and Trachymyrmex maintain abundant Pseudonocardia. When challenged, these species had lower MG grooming rates, targeted primarily to brood. More elaborate MG defences and reduced reliance on mutualistic Pseudonocardia are correlated with larger colony size among attine genera, raising questions about the efficacy of managing disease in large societies with chemical cocktails versus bacterial antimicrobial metabolites
    corecore