22 research outputs found

    BeitrÀge zur Chemie der Pniktogene: Pnictanylidenphosphorane und Cyclotripnictane

    Get PDF
    Diese Arbeit beschreibt Aspekte der Chemie der Phosphanylidenphosphorane, Triphosphirane und von Mehrfachbindungssystemen der Gruppe 13 und 15. Es wird gezeigt, dass Phosphanylidenphosphorane sowohl potente Phosphiniden-ÜbertrĂ€ger darstellen, als auch eine Phosphiniden-artige ReaktivitĂ€t zeigen. Triphosphirane mit Aryl-Substituenten können selektiv hergestellt werden, und deren ReaktivtĂ€t gegenĂŒber Titanocen-Vorstufenkomplexen wird diskutiert. DarĂŒber hinaus wird gezeigt, dass die analogen Triarsirane synthetisiert werden können und vielfĂ€ltige Reagenzien in der MolekĂŒlchemie darstellen.This thesis describes aspects of the chemistry of phosphanylidene phosphoranes, triphosphiranes and of group 13/15 multiple bond systems. It is shown that phosphanylidene phosphoranes are both potent phosphinidene transfer agents and exhibit phosphinidene-like reactivity. Triphosphiranes with aryl substituents can be selectively prepared and their reactivity towards titanocene precursor complexes is discussed. Furthermore, it is shown that the analogous triarsiranes can be synthesised and are versatile reagents in molecular chemistry

    Cyclische Dipnictadialane

    Get PDF
    Bei Umsetzungen der AlI-Verbindung Cp3tAl mit Triphosphiranen (PAr)3 (Ar=Mes, Dip, Tip) ist es gelungen, Lewis-basenfreie cyclische Diphosphadialane herzustellen, bei denen sowohl das Al- als auch das P-Atom drei Substituenten tragen. Mit den sterisch anspruchsvolleren Dip- und Tip-Substituenten wurden die ersten 1,2-Diphospha-3,4-dialuminacyclobutane erhalten, wĂ€hrend mit Mes-Substituenten [Cp3tAl(ÎŒ-PMes)]2 gebildet wird. Diese abweichende ReaktivitĂ€t wurde durch DFT-Studien bestĂ€tigt, die auf eine thermodynamische PrĂ€ferenz fĂŒr die 1,2-Diphospha-3,4-dialuminacyclobutane fĂŒr sterisch anspruchsvollere Gruppen am Phosphor hinwiesen. Mithilfe von Cp*Al konnten wir dieses Konzept auf die entsprechenden cyclischen Diarsadialane [Cp*Al(ÎŒ-AsAr)]2 (Ar=Dip, Tip) ausdehnen und zusĂ€tzlich die Phosphorvarianten [Cp*Al(ÎŒ-PAr)]2 (P=Mes, Dip, Tip) synthetisieren. Die ReaktivitĂ€t von [Cp3tAl(ÎŒ-PPh)]2 gegenĂŒber NHCs wurde untersucht und fĂŒhrte zu doppelt NHC-stabilisiertem [Cp3t(IiPr2)Al(ÎŒ-PPh)]2

    On the ambiphilic character of phosphanylidenephosphoranes and manipulation of phosphinidenoid reactivity with Lewis acids

    No full text
    Phosphanylidenephosphoranes of the type R−P(PR’3), also known as phospha-Wittig reagents, can be utilized in a variety of bond activation reactions pursuing their phosphinidenoid reactivity. In here, we thoroughly show that a facile PMe3 for H2O exchange gives access to various primary phosphine oxides of the general formula RP(H)2O (R = Mes*, MesTer, DipTer). The molecular structure of DipTerP(H)2O was determined and provided the first picture of such species in the solid state. However, phosphanylidenephosphoranes are described to be highly nucleophilic as well. We show that the attachment of main group Lewis acids such as GaCl3 and GaI3 to2 R−P(PMe3) yielded highly sensitive, yet stable coordination compounds [RP(GaX3)PMe3] (R = Mes*, DipTer) or [(RPPMe3)2GaCl2]GaCl4 (R = MesTer). In contrast to the free phosphanylidenephosphoranes, these species reacted differently with H2O which was demonstrated for [(Mes*PPMe3)GaI3]. Here the formation of the phosphinophosphonium cation [Mes*P(H)PMe3]+ and different anions was observed with combined NMR spectroscopic and SC-XRD (SC-XRD = single crystal diffraction analysis) studies. This work demonstrates that the ambiphilic character of phosphanylidenephosphoranes can be utilized to manipulate the reactivity of R−P(PMe3) towards water, giving primary phosphine oxides, whereas the Lewis acid adducts [(RPPMe3)GaX3] gave phosphino-phosphonium species

    Titanocene Pnictinidene Complexes

    No full text
    The phospha-Wittig reagent MesTerPPMe3 (MesTer = 2,6-{2,4,6-Me3-C6H2}-C6H3) and arsa-Wittig reagent DipTerAsPMe3 (DipTer = 2,6-{2,6-iPr2-C6H3}-C6H3) have been employed to synthesize the titanocene complexes Cp2Ti(PMe3)PnAr (Pn = P, As) with terminal phosphinidene or arsinidene ligands, respectively. Ab initio studies show that the description as singlet biradicaloids in their ground state is warranted.<br /

    Phosphine-catalysed reductive coupling of Dihalophosphanes

    No full text
    Classically, tetraorgano diphosphanes have been synthesized through Wurtz-type reductive coupling of halophosphanes R2PX or more recently, through the dehydrocoupling of phosphines R2PH. Catalytic variants of the dehydrocoupling reaction have been reported but are limited to R2PH compounds. Using PEt3 as a catalyst, we now show that TipPBr2 (Tip = 2,4,6-iPr3C6H2) is selectively coupled to give the dibromodiphosphane (TipPBr)2 (1), a compound not accessible using classic Mg reduction. Surprisingly, when using DipPBr2 (Dip = 2,6-iPr3C6H3) in the PEt3-catalysed reductive coupling the diphosphene (PDip)2 (2) with a P=P double was formed selectively. In benzene solutions (PDip)2 has a half life-time of ca. 28 days and can be utilized with NHCs to access NHC-phosphinidene adducts. Control experiments show that [BrPEt3]Br is a potential oxidation product in the catalytic cycle, which can be then debrominated by using Zn dust as sacrificial reductant

    Aryl-substituted Triarsiranes: Synthesis and Reactivity

    No full text
    Cyclotriarsanes are rare and limited synthetic approaches have hampered reactivity studies on these systems. Described in here is a scalable synthetic protocol towards (AsAr)3 (Ar = Dip, 2,6-iPr2-C6H3; Tip, 2,4,6-iPr3-C6H2), which allowed to study their reactivity towards [Cp2Ti(C2(SiMe3)2], affording titanocene diarsene complexes and towards N-heterocyclic carbenes (NHCs) to give straightforward access to a variety of NHC-arsinidene adducts. The electronic structure of the titanium diarsene complxes has been studied and they are best described as Ti(IV) species with a doubly reduced As2Ar2 ligand. These findings will make (AsAr)3 valuable precursors in the synthetic inorganic and organic chemistry
    corecore