106 research outputs found
The neurobiology of cortical music representations
Music is undeniable one of humanityâs defining traits, as it has been documented since the earliest
days of mankind, is present in all knowcultures and perceivable by all humans nearly alike.
Intrigued by its omnipresence, researchers of all disciplines started the investigation of musicâs
mystical relationship and tremendous significance to humankind already several hundred
years ago. Since comparably recently, the immense advancement of neuroscientific methods
also enabled the examination of cognitive processes related to the processing of music. Within
this neuroscience ofmusic, the vast majority of research work focused on how music, as an auditory
stimulus, reaches the brain and howit is initially processed, aswell as on the tremendous
effects it has on and can evoke through the human brain. However, intermediate steps, that is
how the human brain achieves a transformation of incoming signals to a seemingly specialized
and abstract representation of music have received less attention. Aiming to address this gap,
the here presented thesis targeted these transformations, their possibly underlying processes
and how both could potentially be explained through computational models. To this end, four
projects were conducted. The first two comprised the creation and implementation of two
open source toolboxes to first, tackle problems inherent to auditory neuroscience, thus also affecting
neuroscientific music research and second, provide the basis for further advancements
through standardization and automation. More precisely, this entailed deteriorated hearing
thresholds and abilities in MRI settings and the aggravated localization and parcellation of the
human auditory cortex as the core structure involved in auditory processing. The third project
focused on the humanâs brain apparent tuning to music by investigating functional and organizational
principles of the auditory cortex and network with regard to the processing of different
auditory categories of comparable social importance, more precisely if the perception of music
evokes a is distinct and specialized pattern. In order to provide an in depth characterization
of the respective patterns, both the segregation and integration of auditory cortex regions was
examined. In the fourth and final project, a highly multimodal approach that included fMRI,
EEG, behavior and models of varying complexity was utilized to evaluate how the aforementioned
music representations are generated along the cortical hierarchy of auditory processing
and how they are influenced by bottom-up and top-down processes. The results of project 1
and 2 demonstrated the necessity for the further advancement of MRI settings and definition
of working models of the auditory cortex, as hearing thresholds and abilities seem to vary as
a function of the used data acquisition protocol and the localization and parcellation of the
human auditory cortex diverges drastically based on the approach it is based one. Project 3
revealed that the human brain apparently is indeed tuned for music by means of a specialized
representation, as it evoked a bilateral network with a right hemispheric weight that was not
observed for the other included categories. The result of this specialized and hierarchical recruitment
of anterior and posterior auditory cortex regions was an abstract music component
ix
x SUMMARY
that is situated in anterior regions of the superior temporal gyrus and preferably encodes music,
regardless of sung or instrumental. The outcomes of project 4 indicated that even though
the entire auditory cortex, again with a right hemispheric weight, is involved in the complex
processing of music in particular, anterior regions yielded an abstract representation that varied
excessively over time and could not sufficiently explained by any of the tested models. The
specialized and abstract properties of this representation was furthermore underlined by the
predictive ability of the tested models, as models that were either based on high level features
such as behavioral representations and concepts or complex acoustic features always outperformed
models based on single or simpler acoustic features. Additionally, factors know to influence
auditory and thus music processing, like musical training apparently did not alter the
observed representations. Together, the results of the projects suggest that the specialized and
stable cortical representation of music is the outcome of sophisticated transformations of incoming
sound signals along the cortical hierarchy of auditory processing that generate a music
component in anterior regions of the superior temporal gyrus by means of top-down processes
that interact with acoustic features, guiding their processing.Musik ist unbestreitbarer Weise eine der definierenden Eigenschaften des Menschen. Dokumentiert
seit den fruÌhesten Tagen der Menschheit und in allen bekannten Kulturen vorhanden,
ist sie von allenMenschen nahezu gleichwahrnehmbar. Fasziniert von ihrerOmniprÀsenz
haben Wissenschaftler aller Disziplinen vor einigen hundert Jahren begonnen die mystische
Beziehung zwischen Musik und Mensch, sowie ihre enorme Bedeutung fuÌr selbigen zu untersuchen.
Seit einem vergleichsweise kurzem Zeitraum ist es durch den immensen Fortschritt
neurowissenschafticher Methoden auch möglich die kognitiven Prozesse, welche an der Verarbeitung
von Musik beteiligt, sind zu untersuchen. Innerhalb dieser Neurowissenschaft der
Musik hat sich ein GroĂteil der Forschungsarbeit darauf konzentriert wie Musik, als auditorischer
Stimulus, das menschliche Gehirn erreicht und wie sie initial verarbeitet wird, als auch
welche kolossallen Effekte sie auf selbiges hat und auch dadurch bewirken kann. Jedoch haben
die Zwischenschritte, also wie das menschliche Gehirn eintreffende Signale in eine scheinbar
spezialisierte und abstrakte ReprÀsentation vonMusik umwandelt, vergleichsweise wenig Aufmerksamkeit
erhalten. Um die dadurch entstandene LuÌcke zu adressieren, hat die hier vorliegende
Dissertation diese Prozesse und wie selbige durch Modelle erklÀrt werden können in
vier Projekten untersucht. Die ersten beiden Projekte beinhalteten die Herstellung und Implementierung
von zwei Toolboxen um erstens, inhÀrente Probleme der auditorischen Neurowissenschaft,
daher auch neurowissenschaftlicher Untersuchungen von Musik, zu verbessern
und zweitens, eine Basis fuÌr weitere Fortschritte durch Standardisierung und Automatisierung
zu schaffen. Im genaueren umfasste dies die stark beeintrÀchtigten Hörschwellen und
âfĂ€higkeiten in MRT-Untersuchungen und die erschwerte Lokalisation und Parzellierung des
menschlichen auditorischen Kortex als Kernstruktur auditiver Verarbeitung. Das dritte Projekt
befasste sich mit der augenscheinlichen Spezialisierung von Musik im menschlichen Gehirn
durch die Untersuchung funktionaler und organisatorischer Prinzipien des auditorischen
Kortex und Netzwerks bezuÌglich der Verarbeitung verschiedener auditorischer Kategorien vergleichbarer
sozialer Bedeutung, im genaueren ob die Wahrnehmung von Musik ein distinktes
und spezialisiertes neuronalenMuster hervorruft. Umeine ausfuÌhrliche Charakterisierung
der entsprechenden neuronalen Muster zu ermöglichen wurde die Segregation und Integration
der Regionen des auditorischen Kortex untersucht. Im vierten und letzten Projekt wurde
ein hochmultimodaler Ansatz,welcher fMRT, EEG, Verhalten undModelle verschiedener KomplexitÀt
beinhaltete, genutzt, umzu evaluieren, wie die zuvor genannten ReprÀsentationen von
Musik entlang der kortikalen Hierarchie der auditorischen Verarbeitung generiert und wie sie
möglicherweise durch Bottom-up- und Top-down-AnsÀtze beeinflusst werden. Die Ergebnisse
von Projekt 1 und 2 demonstrierten die Notwendigkeit fuÌr weitere Verbesserungen von MRTUntersuchungen
und die Definition eines Funktionsmodells des auditorischen Kortex, daHörxi
xii ZUSAMMENFASSUNG
schwellen und âfĂ€higkeiten stark in AbhĂ€ngigkeit der verwendeten Datenerwerbsprotokolle
variierten und die Lokalisation, sowie Parzellierung des menschlichen auditorischen Kortex
basierend auf den zugrundeliegenden AnsÀtzen drastisch divergiert. Projekt 3 zeigte, dass das
menschliche Gehirn tatsÀchlich eine spezialisierte ReprÀsentation vonMusik enthÀlt, da selbige
als einzige auditorische Kategorie ein bilaterales Netzwerk mit rechtshemisphÀrischer Gewichtung
evozierte. Aus diesemNetzwerk, welches die Rekrutierung anteriorer und posteriorer
Teile des auditorischen Kortex beinhaltete, resultierte eine scheinbar abstrakte ReprÀsentation
von Musik in anterioren Regionen des Gyrus temporalis superior, welche prÀferiert Musik enkodiert,
ungeachtet ob gesungen oder instrumental. Die Resultate von Projekt 4 deuten darauf
hin, dass der gesamte auditorische Kortex, erneut mit rechtshemisphÀrischer Gewichtung, an
der komplexen Verarbeitung vonMusik beteiligt ist, besonders aber anteriore Regionen, die bereits
genannten abstrakte ReprĂ€sentation hervorrufen, welche sich exzessiv uÌber die Zeitdauer
derWahrnehmung verÀndert und nicht hinreichend durch eines der getestetenModelle erklÀrt
werden kann. Die spezialisierten und abstrakten Eigenschaften dieser ReprÀsentationen wurden
weiterhin durch die prÀdiktiven FÀhigkeiten der getestetenModelle unterstrichen, daModelle,
welche entweder auf höheren Eigenschaften wie VerhaltensreprÀsentationen und mentalen
Konzepten oder komplexen akustischen Eigenschaften basierten, stets Modelle, welche
auf niederen Attributen wie simplen akustischen Eigenschaften basierten, uÌbertrafen. ZusĂ€tzlich
konnte kein Effekt von Faktoren, wie z.B. musikalisches Training, welche bekanntermaĂen
auditorische und daherMusikverarbeitung beeinflussen, nachgewiesen werden.
Zusammengefasst deuten die Ergebnisse der Projekte darauf, hin dass die spezialisierte und
stabile kortikale ReprÀsentation vonMusik ein Resultat komplexer Prozesse ist, welche eintreffende
Signale entlang der kortikalen Hierarchie auditorischer Verarbeitung in eine abstrakte
ReprÀsentation vonMusik innerhalb anteriorer Regionen des Gyrus temporalis superior durch
Top-Down-Prozesse, welche mit akustischen Eigenschaften interagieren und deren Verarbeitung
steuern, umwandeln
Traineesâ perspectives and recommendations for catalyzing the next generation of NeuroAI researchers
At this critical juncture in the development of NeuroAI, we outline challenges and training needs of junior researchers working across AI and neuroscience. We also provide advice and resources to help trainees plan their NeuroAI careers
The past, present, and future of the brain imaging data structure (BIDS)
The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS
The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data
Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere
The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)
The Brain Imaging Data Structure (BIDS) is a community-driven standard for
the organization of data and metadata from a growing range of neuroscience
modalities. This paper is meant as a history of how the standard has developed
and grown over time. We outline the principles behind the project, the
mechanisms by which it has been extended, and some of the challenges being
addressed as it evolves. We also discuss the lessons learned through the
project, with the aim of enabling researchers in other domains to learn from
the success of BIDS.Development of the BIDS Standard has been supported by the International Neuroinformatics Coordinating Facility, Laura and John Arnold Foundation, National Institutes of Health (R24MH114705, R24MH117179, R01MH126699, R24MH117295, P41EB019936, ZIAMH002977, R01MH109682, RF1MH126700, R01EB020740), National Science Foundation (OAC-1760950, BCS-1734853, CRCNS-1429999, CRCNS-1912266), Novo Nordisk Fonden (NNF20OC0063277), French National Research Agency (ANR-19-DATA-0023, ANR 19-DATA-0021), Digital Europe TEF-Health (101100700), EU H2020 Virtual Brain Cloud (826421), Human Brain Project (SGA2 785907, SGA3 945539), European Research Council (Consolidator 683049), German Research Foundation (SFB 1436/425899996), SFB 1315/327654276, SFB 936/178316478, SFB-TRR 295/424778381), SPP Computational Connectomics (RI 2073/6-1, RI 2073/10-2, RI 2073/9-1), European Innovation Council PHRASE Horizon (101058240), Berlin Institute of Health & Foundation CharitĂ©, Johanna Quandt Excellence Initiative, ERAPerMed Pattern-Cog, and the Virtual Research Environment at the CharitĂ© Berlin â a node of EBRAINS Health Data Cloud.N
The past, present, and future of the Brain Imaging Data Structure (BIDS)
The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of
data and metadata from a growing range of neuroscience modalities. This paper is meant as a
history of how the standard has developed and grown over time. We outline the principles
behind the project, the mechanisms by which it has been extended, and some of the challenges
being addressed as it evolves. We also discuss the lessons learned through the project, with the
aim of enabling researchers in other domains to learn from the success of BIDS
EXPRA - group 3 - winter term 2021
This is the OSF project for group 3 of the EXPRA during winter term 2021 @ Goethe University Frankfurt, including data, code and everything else
- âŠ