36 research outputs found

    Numerical modelling of the absolute stress state in the Marmara region - a contribution to seismic hazard assessment

    Get PDF
    The kinematics and dynamics of the Sea of Marmara region are addressed using 3D geomechanical numerical modelling. The velocity field and absolute stress in the crust are modelled both in the long-term and during the interseismic period. A number of quantities relevant for seismic hazard assessment are derived

    The analysis of slip tendency of major tectonic faults in Germany

    Get PDF
    Seismic hazard during subsurface operations is often related to the reactivation of pre-existing tectonic faults. The analysis of the slip tendency, i.e., the ratio of shear to normal stress acting on the fault plane, allows an assessment of the reactivation potential of faults. We use the total stresses that result from a large-scale 3D geomechanical–numerical model of Germany and adjacent areas to calculate the slip tendency for three 3D fault geometry sets with increasing complexity. This allows us to draw general conclusions about the influence of the fault geometry on the reactivation potential. In general, the fault reactivation potential is higher in Germany for faults that strike NW–SE and NNE–SSW. Due to the prevailing normal stress regime in the geomechanical–numerical model results, faults dipping at an angle of about 60∘ generally show higher slip tendencies in comparison to steeper or shallower dipping faults. Faults implemented with a straight geometry show higher slip tendencies than those represented with a more complex, uneven geometry. Pore pressure has been assumed to be hydrostatic and has been shown to have a major influence on the calculated slip tendencies. Compared to slip tendency values calculated without pore pressure, the consideration of pore pressure leads to an increase in slip tendency of up to 50 %. The qualitative comparison of the slip tendency with the occurrence of seismic events with moment magnitudes Mw_w>3.5 shows areas with an overall good spatial correlation between elevated slip tendencies and seismic activity but also highlights areas where more detailed and diverse fault sets would be beneficial

    The crustal stress field of Germany: a refined prediction

    Get PDF
    Information about the absolute stress state in the upper crust plays a crucial role in the planning and execution of, e.g., directional drilling, stimulation and exploitation of geothermal and hydrocarbon reservoirs. Since many of these applications are related to sediments, we present a refined geomechanical–numerical model for Germany with focus on sedimentary basins, able to predict the complete 3D stress tensor. The lateral resolution of the model is 2.5 km, the vertical resolution about 250 m. Our model contains 22 units with focus on the sedimentary layers parameterized with individual rock properties. The model results show an overall good fit with magnitude data of the minimum (Shmin_{hmin}) and maximum horizontal stress (SSHmax_{Hmax}) that are used for the model calibration. The mean of the absolute stress differences between these calibration data and the model results is 4.6 MPa for Shmin and 6.4 MPa for SSHmax_{Hmax}. In addition, our predicted stress field shows good agreement to several supplementary in-situ data from the North German Basin, the Upper Rhine Graben and the Molasse Basin

    Interner Bericht NIB 19-14 - Local stress field sensitivity analysis - case study Zürich Nordost & Südranden

    No full text

    Numerical Modelling of Salt-Related Stress Decoupling in Sedimentary Basins–Motivated by Observational Data from the North German Basin

    Get PDF
    A three dimensional (3D) finite element model is used to study the conditions leading to mechanical decoupling at a salt layer and vertically varying stress fields in salt-bearing sedimentary basins. The study was inspired by observational data from northern Germany showing stress orientations varying up to 90° between the subsalt and the suprasalt layers. Parameter studies address the role of salt viscosity and salt topology on how the plate boundary forces acting at the basement level affect the stresses in the sedimentary cover above the salt layer. Modelling results indicate that mechanical decoupling occurs for dynamic salt viscosities lower than 1021 Pa·s, albeit this value depends on the assumed model parameters. In this case, two independent stress fields coexist above and below the salt layer, differing in tectonic stress regime and/or stress orientation. Thereby, stresses in the subsalt domain are dominated by the shortening applied, whereas in the suprasalt section they are controlled by the local salt topology. For a salt diapir, the orientation of the maximum horizontal stress changes from a circular pattern above to a radial pattern adjacent to the diapir. The study shows the value of geomechanical models for stress prediction in salt-bearing sedimentary basins providing a continuum mechanics–based explanation for the variable stress orientations observed

    Interner Bericht NIB 19-15 - Local stress field sensitivity analysis - case study Jura Ost

    No full text
    corecore