115 research outputs found

    Theory and practice in secondary schools in Argentina: knowledge, experience or work practices?

    Get PDF
    This paper aims to interpret the meaning and orientation of practices for the transition to the world of work, as a compulsory curricular area of the secondary technical and vocational education in Argentina. The conceptual analysis is centred on the relationship between theoretical education and practice during the learning trajectory in the secondary and technical level and questions the meaning of practices, as a mean for the students to bring into play knowledge about socio-productive processes related to the work environment. The results of researches of the PEET-IICE/UBA/CONICET allow for considering the objective conditions for the transition to the world of work in the context of provincial, economical and social inequalities and institutional differentiation in technical education. Finally, the article proposes the interpretation of the behaviour of some schools according to the modalities of training, level of consolidation, size, institutional profiles and the implementation of practices according to the social and economical conditions of their specific territories

    The electronic structure of La1−x_{1-x}Srx_{x}MnO3_{3} thin films and its TcT_c dependence as studied by angle-resolved photoemission

    Full text link
    We present angle-resolved photoemission spectroscopy results for thin films of the three-dimensional manganese perovskite La1−x_{1-x}Srx_{x}MnO3_{3}. We show that the transition temperature (TcT_c) from the paramagnetic insulating to ferromagnetic metallic state is closely related to details of the electronic structure, particularly to the spectral weight at the k{\bf k}-point, where the sharpest step at the Fermi level was observed. We found that this k{\bf k}-point is the same for all the samples, despite their different TcT_c. The change of TcT_c is discussed in terms of kinetic energy optimization. Our ARPES results suggest that the change of the electronic structure for the samples having different transition temperatures is different from the rigid band shift.Comment: Accepted by Journal of Physics: Condensed Matte

    LRX Proteins play a crucial role in pollen grain and pollen tube cell wall development

    Get PDF
    Leucine-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal leucine-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis thaliana. Mutations in multiple pollen-expressed lrx genes causes severe defects in pollen germination and pollen tube (PT) growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the PT growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modelling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics

    Dose-response relationship between ambulatory load magnitude and load-induced changes in COMP in young healthy adults

    Get PDF
    To determine the dose-response relationship between ambulatory load magnitude during a walking stress test and load-induced changes in serum concentration of cartilage oligomeric matrix protein (sCOMP) in healthy subjects.; sCOMP was assessed before and after a 30-min walking stress test performed on three test days by 24 healthy volunteers. In each walking stress test, one of three ambulatory loads was applied in a block randomized crossover design: normal body weight (BW) (100%BW = normal load); reduced BW (80%BW = reduced load); increased BW (120%BW = increased load). Knee kinematics and ground reaction force (GRF) were measured using an inertial sensor gait analysis system and a pressure plate embedded in the treadmill.; Load-induced increases in sCOMP rose with increasing ambulatory load magnitude. Mean sCOMP levels increased immediately after the walking stress test by 26.8 ± 12.8%, 28.0 ± 13.3% and 37.3 ± 18.3% for the reduced, normal or increased load condition, respectively. Lower extremity kinematics did not differ between conditions.; The results of this study provide important evidence of a dose-response relationship between ambulatory load magnitude and load-induced changes in sCOMP. Our data suggests that in normal weight persons sCOMP levels are more sensitive to increased than to reduced load. The experimental framework presented here may form the basis for studying the relevance of the dose-response relationship between ambulatory load magnitude and load-induced changes in biomarkers involved in metabolism of healthy articular cartilage and after injury

    Pro-fibrotic phenotype of bone marrow stromal cells in Modic type 1 changes

    Full text link
    Modic type 1 changes (MC1) are painful vertebral bone marrow lesions frequently found in patients suffering from chronic low-back pain. Marrow fibrosis is a hallmark of MC1. Bone marrow stromal cells (BMSCs) are key players in other fibrotic bone marrow pathologies, yet their role in MC1 is unknown. The present study aimed to characterise MC1 BMSCs and hypothesised a pro-fibrotic role of BMSCs in MC1. BMSCs were isolated from patients undergoing lumbar spinal fusion from MC1 and adjacent control vertebrae. Frequency of colony-forming unit fibroblast (CFU-F), expression of stem cell surface markers, differentiation capacity, transcriptome, matrix adhesion, cell contractility as well as expression of pro-collagen type I alpha 1, α-smooth muscle actin, integrins and focal adhesion kinase (FAK) were compared. More CFU-F and increased expression of C-X-C-motif-chemokine 12 were found in MC1 BMSCs, possibly indicating overrepresentation of a perisinusoidal BMSC population. RNA sequencing analysis showed enrichment in extracellular matrix proteins and fibrosis-related signalling genes. Increases in pro-collagen type I alpha 1 expression, cell adhesion, cell contractility and phosphorylation of FAK provided further evidence for their pro-fibrotic phenotype. Moreover, a leptin receptor high expressing (LEPRhigh) BMSC population was identified that differentiated under transforming growth factor beta 1 stimulation into myofibroblasts in MC1 but not in control BMSCs. In conclusion, pro-fibrotic changes in MC1 BMSCs and a LEPRhigh MC1 BMSC subpopulation susceptible to myofibroblast differentiation were found. Fibrosis is a hallmark of MC1 and a potential therapeutic target. A causal link between the pro-fibrotic phenotype and clinical characteristics needs to be demonstrated

    Effect of microstructural evolution on magnetic properties of Ni thin films

    Get PDF
    Copyright © Indian Academy of Sciences.The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.University Grants Commission for Centre of Advanced Studies in Physic

    Partitioning clustering algorithms for protein sequence data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-sequencing projects are currently producing an enormous amount of new sequences and cause the rapid increasing of protein sequence databases. The unsupervised classification of these data into functional groups or families, clustering, has become one of the principal research objectives in structural and functional genomics. Computer programs to automatically and accurately classify sequences into families become a necessity. A significant number of methods have addressed the clustering of protein sequences and most of them can be categorized in three major groups: hierarchical, graph-based and partitioning methods. Among the various sequence clustering methods in literature, hierarchical and graph-based approaches have been widely used. Although partitioning clustering techniques are extremely used in other fields, few applications have been found in the field of protein sequence clustering. It is not fully demonstrated if partitioning methods can be applied to protein sequence data and if these methods can be efficient compared to the published clustering methods.</p> <p>Methods</p> <p>We developed four partitioning clustering approaches using Smith-Waterman local-alignment algorithm to determine pair-wise similarities of sequences. Four different sets of protein sequences were used as evaluation data sets for the proposed methods.</p> <p>Results</p> <p>We show that these methods outperform several other published clustering methods in terms of correctly predicting a classifier and especially in terms of the correctness of the provided prediction. The software is available to academic users from the authors upon request.</p
    • …
    corecore