17 research outputs found

    Modeling and Stability Analysis of Nonlinear Sampled-Data Systems with Embedded Recovery Algorithms

    Get PDF
    Computer control systems for safety critical systems are designed to be fault tolerant and reliable, however, soft errors triggered by harsh environments can affect the performance of these control systems. The soft errors of interest which occur randomly, are nondestructive and introduce a failure that lasts a random duration. To minimize the effect of these errors, safety critical systems with error recovery mechanisms are being investigated. The main goals of this dissertation are to develop modeling and analysis tools for sampled-data control systems that are implemented with such error recovery mechanisms. First, the mathematical model and the well-posedness of the stochastic model of the sampled-data system are presented. Then this mathematical model and the recovery logic are modeled as a dynamically colored Petri net (DCPN). For stability analysis, these systems are then converted into piecewise deterministic Markov processes (PDP). Using properties of a PDP and its relationship to discrete-time Markov chains, a stability theory is developed. In particular, mean square equivalence between the sampled-data and its associated discrete-time system is proved. Also conditions are given for stability in distribution to the delta Dirac measure and mean square stability for a linear sampled-data system with recovery logic

    A Framework for Probabilistic Evaluation of Interval Management Tolerance in the Terminal Radar Control Area

    Get PDF
    Projections of future traffic in the national airspace show that most of the hub airports and their attendant airspace will need to undergo significant redevelopment and redesign in order to accommodate any significant increase in traffic volume. Even though closely spaced parallel approaches increase throughput into a given airport, controller workload in oversubscribed metroplexes is further taxed by these approaches that require stringent monitoring in a saturated environment. The interval management (IM) concept in the TRACON area is designed to shift some of the operational burden from the control tower to the flight deck, placing the flight crew in charge of implementing the required speed changes to maintain a relative spacing interval. The interval management tolerance is a measure of the allowable deviation from the desired spacing interval for the IM aircraft (and its target aircraft). For this complex task, Formal Methods can help to ensure better design and system implementation. In this paper, we propose a probabilistic framework to quantify the uncertainty and performance associated with the major components of the IM tolerance. The analytical basis for this framework may be used to formalize both correctness and probabilistic system safety claims in a modular fashion at the algorithmic level in a way compatible with several Formal Methods tools

    An Initial Examination for Verifying Separation Algorithms by Simulation

    Get PDF
    An open question in algorithms for aircraft is what can be validated by simulation where the simulation shows that the probability of undesirable events is below some given level at some confidence level. The problem is including enough realism to be convincing while retaining enough efficiency to run the large number of trials needed for high confidence. The paper first proposes a goal based on the number of flights per year in several regions. The paper examines the probabilistic interpretation of this goal and computes the number of trials needed to establish it at an equivalent confidence level. Since any simulation is likely to consider the algorithms for only one type of event and there are several types of events, the paper examines under what conditions this separate consideration is valid. This paper is an initial effort, and as such, it considers separation maneuvers, which are elementary but include numerous aspects of aircraft behavior. The scenario includes decisions under uncertainty since the position of each aircraft is only known to the other by broadcasting where GPS believes each aircraft to be (ADS-B). Each aircraft operates under feedback control with perturbations. It is shown that a scenario three or four orders of magnitude more complex is feasible. The question of what can be validated by simulation remains open, but there is reason to be optimistic

    Comparison of Aircraft Models and Integration Schemes for Interval Management in the TRACON

    Get PDF
    Reusable models of common elements for communication, computation, decision and control in air traffic management are necessary in order to enable simulation, analysis and assurance of emergent properties, such as safety and stability, for a given operational concept. Uncertainties due to faults, such as dropped messages, along with non-linearities and sensor noise are an integral part of these models, and impact emergent system behavior. Flight control algorithms designed using a linearized version of the flight mechanics will exhibit error due to model uncertainty, and may not be stable outside a neighborhood of the given point of linearization. Moreover, the communication mechanism by which the sensed state of an aircraft is fed back to a flight control system (such as an ADS-B message) impacts the overall system behavior; both due to sensor noise as well as dropped messages (vacant samples). Additionally simulation of the flight controller system can exhibit further numerical instability, due to selection of the integration scheme and approximations made in the flight dynamics. We examine the theoretical and numerical stability of a speed controller under the Euler and Runge-Kutta schemes of integration, for the Maintain phase for a Mid-Term (2035-2045) Interval Management (IM) Operational Concept for descent and landing operations. We model uncertainties in communication due to missed ADS-B messages by vacant samples in the integration schemes, and compare the emergent behavior of the system, in terms of stability, via the boundedness of the final system state. Any bound on the errors incurred by these uncertainties will play an essential part in a composable assurance argument required for real-time, flight-deck guidance and control systems,. Thus, we believe that the creation of reusable models, which possess property guarantees, such as safety and stability, is an innovative and essential requirement to assessing the emergent properties of novel airspace concepts of operation

    Formal Verification of Safety Buffers for Sate-Based Conflict Detection and Resolution

    Get PDF
    The information provided by global positioning systems is never totally exact, and there are always errors when measuring position and velocity of moving objects such as aircraft. This paper studies the effects of these errors in the actual separation of aircraft in the context of state-based conflict detection and resolution. Assuming that the state information is uncertain but that bounds on the errors are known, this paper provides an analytical definition of a safety buffer and sufficient conditions under which this buffer guarantees that actual conflicts are detected and solved. The results are presented as theorems, which were formally proven using a mechanical theorem prover

    Safe and Optimal Techniques Enabling Recovery, Integrity, and Assurance

    Get PDF
    There is a trend in the aviation industry to go from federated to integrated computing systems. Combining a number of traditional stand-alone federated systems into an integrated common platform (called Integrated Modular Avionics, IMA) has the benefit of increased power efficiency, reduced support hardware, and reduced cabling. However, changing from federated to integrated has a significant impact on the system architecture and hence the process of how avionic systems are to be analyzed. Traditional approaches to safety analysis become inefficient when functional boundaries can no longer be assumed for failure independence and fault isolation. In this report, we describe a tool that we developed to accelerate the safety engineer's ability to perform safety analysis of IMA systems through modeling, as well as optimize the system engineer's ability to develop a system through architecture synthesis. This work was the result of a three-year research effort called SOTERIA (Safe and Optimal Techniques Enabling Recovery, Integrity, and Assurance). We developed a compositional modeling language that supports rapid development, modification, and evaluation of architectures. The modeling language is structured such that the end-user defines a library of components with information on component reliability, connectivity, and fault propagation logic. The system model is built by instantiating the components from the library, connecting the components, and identifying the top-level faults of interest. Our tool is compositional in that the end-user only needs to define safety aspects at the component level. The tool takes the model and automatically synthesizes both the qualitative and quantitative safety analyses. We go further by allowing users to describe system information such as components to use in an architecture and their connection compatibility and automatically synthesize an architecture that meets the top-level probability target adhering to end-user specified constraints. This capability allows users to rapidly explore a design space.

    Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    No full text
    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework

    Towards a Theory of Sampled-Data Piecewise-Deterministic Markov Processes

    No full text
    The analysis and design of practical control systems requires that stochastic models be employed. Analysis and design tools have been developed, for example, for Markovian jump linear continuous and discrete-time systems, piecewise-deterministic processes (PDP's), and general stochastic hybrid systems (GSHS's). These model classes have been used in many applications, including fault tolerant control and networked control systems. This paper presents initial results on the analysis of a sampled-data PDP representation of a nonlinear sampled-data system with a jump linear controller. In particular, it is shown that the state of the sampled-data PDP satisfies the strong Markov property. In addition, a relation between the invariant measures of a sampled-data system driven by a stochastic process and its associated discrete-time representation are presented. As an application, when the plant is linear with no external input, a sufficient testable condition for the convergence in distribution to the invariant delta Dirac measure is given

    Stochastic Stability of Sampled Data Systems with a Jump Linear Controller

    No full text
    In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework
    corecore