
A FRAMEWORK FOR PROBABILISTIC EVALUATION OF INTERVAL

MANAGEMENT TOLERENCE IN THE TERMINAL RADAR CONTROL

AREA

Heber Herencia-Zapana, National Institute of Aerospace, Hampton, VA

George Hagen, NASA Langley Research Center, Hampton, VA

Natasha Neogi, National Institute of Aerospace, Hampton, VA

Abstract

Projections of future traffic in the national

airspace show that most of the hub airports and their

attendant airspace will need to undergo significant

redevelopment and redesign in order to accommodate

any significant increase in traffic volume. Even

though closely spaced parallel approaches increase

throughput into a given airport, controller workload

in oversubscribed metroplexes is further taxed by

these approaches that require stringent monitoring in

a saturated environment. The interval management

(IM) concept in the TRACON area is designed to

shift some of the operational burden from the control

tower to the flight deck, placing the flight crew in

charge of implementing the required speed changes

to maintain a relative spacing interval. The interval

management tolerance is a measure of the allowable

deviation from the desired spacing interval for the IM

aircraft (and its target aircraft). For this complex task,

Formal Methods can help to ensure better design and

system implementation.

In this paper, we propose a probabilistic

framework to quantify the uncertainty and

performance associated with the major components

of the IM tolerance. The analytical basis for this

framework may be used to formalize both correctness

and probabilistic system safety claims in a modular

fashion at the algorithmic level in a way compatible

with several Formal Methods tools.

Introduction

The transportation of people and goods through

the air is a critical part of our country's infrastructure

and economy. The Next Generation Air

Transportation System (NextGen) seeks to transform

the current centrally-controlled, voice-

communication-based air transportation system into

an information-rich, highly automated, and agile

system that is safer, more environmentally

acceptable, and sufficiently scalable and adaptable to

allow for large increases in air traffic and system

disruptions.

NextGen will require an evolutionary plan to

provide automation tools to support controllers and

pilots in flexible, collaborative decision making as

well as to assure necessary emergent properties (such

as system safety) over a heterogeneous mix of

equipage, algorithms and operational procedures (see

Figure 1). System wide fault tolerance is necessary.

This is a distinct property from the fault-tolerance of

individual components of the system. Taken in the

context of software agents interacting, even if an

algorithm is provably correct, a component may fail,

and an algorithm's implementation may fail due to

faults arising from such problems as unexpected

latency in communication, cumulative sensor errors,

garbled messages, computational errors between

algorithm variants, or even malicious attacks. These

faults can then propagate in unexpected ways to other

components of the overall system, and means must be

in place to mitigate such occurrences.

One new concept for NextGen is interval

management (IM), which relies on the notion of

trajectory based operations in concert with improved

capabilities in computer technology and a move from

ground-based navigation aids to satellite-based

navigation systems to increase capacity. At the heart

of the concept is a shift in flight planning and

separation responsibility away from ground-based

ATC to the flight deck, where pilots will be able to

make decisions on the routes, altitudes, and speeds of

their aircraft, both tactically and strategically based

on their intent. Decentralized decisions, however, can

impact global optimality and performance.

We present a modular framework for assessing

the safety of IM algorithms by developing formal

specifications of the components, their interactions

and the necessary set of safety properties. This

https://ntrs.nasa.gov/search.jsp?R=20120015510 2019-08-30T22:41:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10570858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

framework allows a close and direct linkage between

probabilistic analysis and the algorithm

implementation.

Probabilistic analysis is typically performed

using a model of the system. We are seeking here to

instead link the probabilistic analysis more directly to

the system at the code level. We hope this rigorous

and systematic examination of the system will

eliminate overlooked special cases of the system's

algorithms and allow for a more complete study of

the implementation's behavior.

This paper is divided as follows. The first

section presents the interval management application,

where we describe the relation between the IM

concept and an algorithm that could be used to

implement it. The second section describes the

components of the speed control algorithm. The third

section shows the correctness of the speed control

algorithm. The fourth section illustrates how it is

possible to do probabilistic analysis at the algorithm

level. Finally the last section gives the conclusions

and directions for future research.

Interval Management

The airspace involves interactions of numerous

entities: aircraft with continuous dynamics, control

algorithms (both onboard and in control towers) with

discrete logic, human decision makers (both onboard

aircraft and in control towers), sensors and actuators,

and communications channels, as well as the flight

rules that govern operational procedures.

Algorithms are an important part of the NextGen

concept. Different aspects of NextGen may involve

numerous different proposed algorithms. For

example, an overview of aircraft separation

algorithms can be found in [1]. This paper focuses on

an algorithm performing the interval management

operation, incorporating probability analysis to

improve its design.

The main actors of the IM operation are the IM

aircraft, with a position and air speed denoted by

xIM(t), vIM(t) and the target aircraft, with position and

air speed denoted by xT(t), vT(t).

Interval management operations can be divided

in three phases: negotiation, where aircraft on two

different trajectories determine how they will both

follow a common trajectory (the order of merging),

action, where they merge onto a common trajectory,

and the terminal approach phase, where one aircraft

follows the descent path of the other [2]. This work

focuses on the third phase, terminal approach. In this

phase aircraft have already merged and are flying on

a single leg in a straight path to the terminal. The

dynamic of the IM and target aircraft are described

by the following differential equations:

Where γ is the flight path, v true air speed, Ψ heading

angle, α angle of attack, T thrust, D drag, g gravity

and m mass.

The actual position of the aircraft performing the

interval management (the “own ship”) along its

trajectory path is denoted by xIM(t), and the actual

position of the target aircraft along its trajectory path

is denoted by xT(t). The measured positions and

Figure 1. System safety

velocities of the aircraft are sampled with some fixed

frequency (in the case of ADS-B messages, every 1

second). The positions and velocities are based on

GPS data and are sent via ADS-B communication

channels, all subject to errors.

There are several potential means of determining

the proper spacing of aircraft on approach. While in

all cases the ultimate goal is to maintain a certain

physical separation distance D, in practice this may

also be maintained through temporal spacing, which

simulations have suggested produces better

performance [3,4,5]. If the target aircraft passes

through a certain point at time t, then the IM aircraft

is required to pass through the same point at a later

time t+τ, with a small amount of leeway.

While under interval management, if two aircraft

are separated by less than the specified minimum

distance D at a given instant in time, then the amount

of overlap is called the spacing error. When keeping

aircraft separated temporally, the range error is used

instead. The range error is the distance between the

along-path position of the IM aircraft at time t and

the along-path position of the target aircraft at time t-

τ, where τ is the desired time spacing interval

between the aircraft. The range error is calculated by

e(t)=xIM(t)-xT(t-τ) [6].

The speed command applied to the IM aircraft is

a function of the range error and the speed of the

target aircraft v
c

=F(e(t),VT(t)). There are several

ways to calculate the speed command [5-8].

We model the IM aircraft in such a way that we

assume that the thrust and drag are the primary means

of changing the IM aircraft dynamics. Therefore

altering the values of these variables represents the

application of the speed command [9].

The IM speed control algorithm relies upon

ADS-B position and velocity measurements

broadcast by the target aircraft, where the position

and velocity accuracy depends on the accuracy of the

GPS readings. Let εs be a predicate that is true if the

measured position and velocity values are within

expected tolerances.

Speed Control Algorithm

The desired speed command, v
c
, is a speed that

will preserve the IM spacing that is defined by the

range error being less than some distance D, as

follows |e(t)|=|xIM(t)-xTar(t-τ)|<D, and conflict means

that there exists a t such that |e(t)| D.

The implementation of the speed command to

the IM aircraft would be an algorithm with the

following imperative instructions and special actions:

 read: read the position and speed of

IM and target aircraft and store them

 cd is the conflict detection algorithm,

where given the position and speed it

calculates if there is a conflict in the

time window between two subsequent

messages. If a conflict is detected,

then it returns a true value, denoted by

cd=T, and cd=F otherwise.

 comp_maneuver: compute the

desired speed, the thrust, and drag and

store them

 act: null action. The algorithm does

not change the aircraft dynamic.

 act: The algorithm alters the aircraft

thrust and drag in order to get the

desired speed command

 comp_time: estimate the time to

transition the desired speed command

and the time it takes to perform these

calculations and store this value

 alarm: issue an alarm. The algorithm

cannot solve the conflict

 cdw: returns cdw=T if the conflict

detection algorithm determines there

will be a conflict in the time window

stored by the comp_time command.

If there is no projected conflict, cdw=F

The speed control algorithm (with desired pre-

and post conditions) is as follows:

read

IF cd=F THEN

 act

ELSE
 comp_maneuver

 comp_time

 IF cdw=F THEN
 act

 ELSE
 alarm

 ENDIF

ENDIF

 If no conflict is detected, then no corrective

action is taken. If a conflict is detected, however,

then a corrective maneuver will be calculated. If the

maneuver is projected to be able to resolve the

conflict, then it will be enacted, otherwise an alarm

will be raised.

Our analysis is primarily concerned with

missing an actual conflict. The noted precondition is

that the sensor values must be within acceptable

tolerances and there is an actual conflict. That means

there is the possibility that the conflict is not detected

(possibly due to measurement errors), as well as the

possibility of failure in other steps of the algorithm.

The end result of executing the algorithm should be

that, if a conflict exists, it is either resolved or else an

alert is issued.

Speed Control Algorithm Correctness

The correctness of an algorithm is related to the

goals of the process to be carried out. Informally, the

set of beliefs concerning the purpose of the algorithm

is referred to as its specification. We can then say that

the algorithm is correct with respect to its

specifications if, for the valid range of input data

accepted by the algorithm, the result produced by the

algorithm is both predicted and repeatable. An

algorithm that always produces the expected

answer(s) if it terminates is said to be partially

correct. An algorithm that is always guaranteed to

terminate, given the resource bounds detailed in the

specifications, is regarded as being feasible and

correct. Note that if the resource bounds are not met,

the algorithm may not terminate.

Program verification based on deductive

methods uses either automatic decision procedures or

proof assistants to ensure the validity of user-

annotated code. These annotations often express

domain-specific properties of the code. However,

formulating annotations correctly (i.e., as precisely as

the domain expert really intends) is nontrivial in

practice. The challenges of producing domain

specific code annotation arise along two directions.

First, the domain knowledge has its own inherent

complexity. In this interval management application,

for example, the annotations are required to capture

the expression of system-wide safety properties.

Second, the code annotations are required to be stated

in a manner that can be interpreted by some theorem

proving software. The logical language supported by

a particular verification tool may be too weak to

express the desired user defined and domain specific

code annotations. Many automatic decision

procedures, for example, are limited to bounded

integer arithmetic o, at most, rational linear algebra.

In order to solve these two challenges this paper

proposes to use Hoare logic [10]. Hoare logic is a

formal system with a set of logical rules for reasoning

about the correctness of a program. The central

feature of Hoare logic is the Hoare triple. A Hoare

triple describes how the execution of a piece of

program changes the state of the computation. The

triple has the form {P}S{Q} where P and Q are

assertions indicating pre-conditions and post-

conditions and S is a command. The basic idea is

that, given some P, after executing S, Q will hold. It

is possible to annotate the algorithm as follows (with

 being the logical and symbol and being the

symbol for logical or, and the predicate do(X)

indicate the command X is to be performed):

{εs ∧ conflict}
IF cd=F THEN act ELSE s’ ENDIF

{¬conflict do(alarm)}

Where s’ =

 comp_maneuver

 comp_time

 IF cdw=F THEN

 act

 ELSE
 alarm

 ENDIF

This annotation indicates the desired result:

given the state information is within acceptable

bounds and there is a conflict, once the speed control

algorithm is executed then either the conflict will be

resolved or an alarm will be issued.

Using the Hoare logic the speed control

algorithm is equivalent to:

{εs ∧ conflict ∧ cd=F} act {¬conflict}

or

{εs ∧ conflict ∧ cd=T}s’{¬conflict do(alarm)}

We propose that, using Hoare logic with annotations,

it is possible to prove the correctness of this sort of

interval management algorithm. One way to prove

the correctness would be to use certain program

analysis tools such as Frama-C[11,12].
1

The algorithm correctness is with respect to its

annotations, but there are still uncertainties inherent

in the information provided by the annotations. The

next section focuses in the analysis of these

uncertainties.

Speed Control Algorithm Uncertainty

The IM tolerance |e(t)|<D is a measure of the

allowable deviation from the desired spacing interval

for the IM aircraft (and its target aircraft) during the

execution of the algorithm. The IM tolerance

represents the bounds on the fault free spacing

precision that must be achieved and maintained by an

IM aircraft implementing the flight deck based speed

control algorithm; it is usually quantified in a

probabilistic fashion as Pr[conflict] ≤p [13,14].

The IM tolerance is directly affected by the

quality of the state data, attained through GPS and

other sensors and ADS-B with probability Pr[εs].

Here we will look at two cases: missed alerts and

false alerts.

Missed Alerts

The main idea is to analyze how the state data

uncertainty in the measurements can affect the IM

tolerance. The goal is to never reach {conflict} after

applying the speed control algorithm no matter

whether the condition cd is true or false. In the event

that a conflict is unavoidable, the algorithm should

raise an alert.

Let recall our basic speed control algorithm:

IF cd=F THEN act ELSE s’ ENDIF

Using the annotations, we wish to prove that the

probability of the following happening is acceptably

low:

1 These specific tools do not require an annotation at each line as

proposed by Hoare. Instead they rely on the Dijkstra-style

weakest precondition calculus to compute the backward

semantics of the function code S to the post-condition Q and

generate the weakest pre-condition wp(S;Q) that is guaranteed to

obtain Q after executing S. What actually needs to be proved is

that this weakest pre-condition holds [15].

{εs ∧ conflict}
IF cd=F THEN act ELSE s’ ENDIF

{conflict do(alarm)}

The precondition indicates that the sensor values

are within the expected range with some probability

and that there exists an actual conflict. The post-

condition of this undesirable situation is that after the

algorithm executes there still a conflict and no alarm

has been indicated.

The IM tolerance Pr[conflict]≤p and the

probability of the sensor error Pr[εs] could be

obtained from aviation standards such as [16]. The

question to be answered is what would be the

probabilistic requirements for the cd and s'

components of the algorithms such that the IM

tolerance is held with the required probability.

The speed control algorithm is required to hold

the IM tolerence with a certain probability p:

 [

* + * +

* +

 * ()+
]

And this is equal to:

 ,* + * +-

 [
* +

 * ()+
]

For how this if-construct affects the probability, see

[17].

This inequality is called the uncertainty budget.

The uncertainty budget analysis consists of checking

the necessary conditions for each module of the

control speed algorithm in order to preserve the

uncertainty budget. The following is one possible,

though conservative, way of dividing the uncertainty

budget among subcomponents.

We know that if both of the left-hand side terms

of the uncertainty budget are less than p/2 then the

IM tolerance will hold.

Let us first focus on the first element of the

uncertainty budget, which is equal to

 [
 * +

* +
]

 ,* +-

Because we assume a conflict actually exists, outside

of any external forces acting on the aircraft, the first

probability is equal to one. Therefore,

Pr[εs ∧ conflict ∧ cd=F}] ≤

and this is equal to

Pr[

] Pr[εs] ≤

The first element of this inequality is the probability

of missing the alert due to sensor error; such an

analysis can be seen in [18,19]. We then need to

guarantee that the product of the sensor error

probability and missed alert probability needs to be

less than p/2. One way to hold the inequality is if the

two expressions are

[c1] Pr[

] ≤ √

and

[c2] Pr[εs] ≤ √

This mean that we need to guarantee that both the

probability of missing the alert because of sensor

error and that the probability of the sensor error needs

to be less than √ .

Now we perform the same analysis for the

second term of the uncertainty budget.

 [
 * ()+

* +
]

 , +-

Then the required probability for the subalgorithm s’

could be

[c3] Pr[
 * ()+

* +
] ≤ √

And a conservative value for the second component

is

[c4] Pr[

] Pr[εs]≤ √

Now having these inequalities, one possible

condition to preserve the IM tolerance is as follows:

Lemma: if the inequalities [c1,..,c4] hold then the

uncertainty budget holds.

The basic idea for the proof is to use basic

inequalities properties such as if and

 then , and if √ and √
then , where a,b,c are positive real

numbers.

The uncertainty budget analysis allows us to see

how, given data for the uncertainty of the sensor

measurement and IM tolerance it is possible to put

bounds to the probability of missing conflict alerts, as

well as other pieces of code such as s’.

False Alerts

The other main case of concern is a false

positive in the initial detection, which will either

induce an unnecessary maneuver (which itself could

potentially result in a new conflict) or signal a false

alarm. This can be captured with the pre- and post

conditions:

{εs ∧ conflict}
IF cd=F THEN act ELSE s’ ENDIF

{do(act) do(alarm)}

In this situation, the speed control algorithm

should do nothing with a certain probability p':

[

* +
 * () ()+
* +

 * () ()++]

And this is equal to:

 [
* +

 * () ()+
]

 [
* +

 * () ()++
]

From the algorithm, the probability of the first term is

equal to zero, so the probability of a false alert is

found by calculating:

Pr[εs ∧ conflict ∧ cd=T}] ≤ p'

Conclusion

The safety argument for NextGen interval

management concepts relies on the ability to reliably

detect conflicts. Because of unavoidable errors in

sensor and transmission data, we cannot guarantee

that the probability of a missed alert is zero. We can,

however, provide arguments that a given algorithm

will only produce missed alerts with a probability

within a certain tolerance. We have proposed a

framework that links the probabilities associated with

the subcomponents of an algorithm through

annotations in the code, and have provided a simple

interval management algorithm along with its

annotations. The annotations used in this framework

are compatible with several Formal Methods tools;

these can be used to demonstrate the (partial)

correctness of an algorithm. In addition, the

annotations used to perform a probabilistic analysis

of the algorithm in the form of an uncertainty budget,

and we sketch this process for the interval

management algorithm.

As future research we would like to formalize

the annotations in an appropriate machine-readable

format (such as in ACSL), which would allow us to

automatically verify the logical partial correctness of

the algorithm in a tool set such as Frama-C. While

such an automatic tool is unlikely to be able to

perform the full analysis, it should be able to treat the

probabilistic terms as uninterpreted and create proof

obligations that could then be checked in an

interactive theorem prover such as PVS [20].

Additional research will also be necessary to find

reasonable means of determining the appropriate

probabilities and bounds for projected sensor data,

such as is used in s'.

References

[1] Kuchar, J. k, L. C. Yang, 2000, A review of

conflict detection and resolution modeling methods.

IEEE Transactions on Intelligent Transportation

Systems, 1:179-189

[2] Twu, P.; Chipalkatty, R.; Rahmani, A.; Egerstedt,

M.; Young, R, 2010, Air traffic maximization for the

terminal phase of flight under FAA's NextGen

framework. Digital Avionics Systems Conference

(DASC), IEEE/AIAA 29th

[3] Ivanescu, D, C. Shaw, E. Hoffman and K. Zeghal,

2006, Towards Performance Requirements for

Airborne Spacing a Sensitivity Analysis of Spacing

Accuracy. 6
th
 AIAA Aviation Technology,

integration and Operations Conference (ATIO)

[4] Ivanescu, D, D. Powell, C. Shaw, E. Hoffman and

K. Zeghal, 2004, Effect of aircraft self-merging in

sequence on an airborne collision avoidance system.

AIAA Guidance. Navigation and Control Conference

and Exhibit

[5] Vinken, P., Hoffman, E., and Zeghal, K 2000,

Influence of Speed and Altitude Profile on the

Dynamics of the In-Trail Following Aircraft.

American Institute of Aeronautics and Astronautics,

Inc

[6] Weitz, L, 2011, Investigating string stability of a

time-history control law for Interval Management,

Transportation Research Part C: Emerging

Technologies

 [7] Hoffman, E, Dan Ivanescu, Chris Shaw, Karim

Zeghal, 2002, Analysis of Spacing Guidance for

Sequencing Aircraft on Merging Trajectories. 21st

Digital Avionics Systems Conference, Irvine,

California, October 2002

[8] Itoh, E, M. Everdij, B. Bakker and H. Blom,

2009, Speed Control for Airborne Separation

Assistance in Continuous Descent Arrivals. 9th

AIAA Aviation Technology, Integration, and

Operations Conference.

[9] Nuic, A, C. Poinsot, M. Iagaru, E. Gallo, F. A.

Navarro, C. Querejeta, 2005, Advanced Aircraft

Performance Modeling for ATM: Enhancements to

the BADA Model. 24th Digital Avionics System

Conference, Washington D.C.

[10] Hoare, C.A.R. 1969, An axiomatic basis for

computer programming. Comm. ACM 12, 576-580

[11] Correnson, L., Cuoq, P., Puccetti, A., Signoles,

J.: Frama-C user manual

[12] Burghardt, J., Gerlach, J., Hartig, K, 2010 ACSL

by example towards a verified C standard library

version 4.2.0 for Frama-C beryllium 2

[13] Levitt, I, L.A. Weitz, 2011, Towards Defining

Required Interval Management Performance, Ninth

USA/Europe Air Traffic Management Research and

Development Seminar (ATM)

[14] Mohleji, S, G. Wang, 2010, Modeling ADS-B

Position and Velocity Errors for Airborne Merging

and Spacing in Interval Management Application.

The MITRE Corporation, technical report

[15] Dijkstra, E, 1976, A Discipline of Programming.

Prentice-Hall (1976)

[16] Minimum aviation system performance

standards for automatic dependent surveillance

broadcast (ADS-B). DO-242A, RTCA (June 2002),

section 2.1.2.12-2.1.2.15

[17] Cousot, P, M, Monerau, 2012, Probabilistic

Abstract Interpretation. In Proceedings of the 22nd

European Symposium on Programming (ESOP

2012). Lecture Notes in Computer Science, vol.

7211, pages 166--190, Springer-Verlag, Heidelberg

[18] Narkawicz, A, C. Muñoz and H. Herencia-

Zapana and G. Hagen. Formal Verification of Lateral

and Temporal Safety Buffers for State-Based

Conflict Detection, Institution of Mechanical

Engineers, Part G, Journal of Aerospace Engineering,

2012

[19] Herencia-Zapana, H, G. Hagen, A. Narkawicz.

Formalizing Probabilistic Safety Claims, NASA

Formal Methods, Lecture Notes in Computer Science

Springer Berlin, 2011

 [20] Owre, S., Shankar, N., Rushby, J.M., J.Stringer-

Calvert, D.W,1999, PVS Language Reference.

Computer Science Laboratory, SRI International

Acknowledgements

This work is supported in part by the National

Aeronautics and Space Administration under NASA

Cooperative Agreement NNL09AA00A, activity

2736.

31st Digital Avionics Systems Conference

October 14-18, 2012

