1,338 research outputs found

    Magnons versus electrons in thermal spin transport through metallic interfaces

    Full text link
    We develop a theory for spin transport in magnetic metals that treats the contribution of magnons and electrons on equal footing. As an application we consider thermally-driven spin injection across an interface between a magnetic metal and a normal metal, i.e., the spin-dependent Seebeck effect. We show that the ratio between magnonic and electronic contribution scales as T/TCTF/TC\sqrt{T/T_C}T_F/T_C, with the Fermi temperature TFT_F and the Curie temperature TCT_C. Since, typically, TCTFT_C \ll T_F, the magnonic contribution may dominate the thermal spin injection, even though the interface is more transparent for electronic spin current.Comment: Contribution to the Special issue on Spincaloritronics in Journal of Physics D: Applied Physic

    Continuous-feed nanocasting process for the synthesis of bismuth nanowire composites

    Get PDF
    We present a novel, continuous-feed nanocasting procedure for the synthesis of bismuth nanowire structures embedded in the pores of a mesoporous silica template. The immobilization of a bismuth salt inside the silica template from a diluted metal salt solution yields a sufficiently high loading to obtain electrically conducting bulk nanowire composite samples after reduction and sintering the nanocomposite powders. Electrical resistivity measurements of sintered bismuth nanowires embedded in the silica template reveal size-quantization effects

    Effects of hole self-trapping by polarons on transport and negative bias illumination stress in amorphous-IGZO

    Full text link
    The effects of hole injection in amorphous-IGZO is analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as, with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative bias illumination stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.Comment: 8 pages, 8 figures, to be published in Journal of Applied Physic

    Phonon driven spin distribution due to the spin-Seebeck effect

    Full text link
    Here we report on measurements of the spin-Seebeck effect of GaMnAs over an extended temperature range alongside the thermal conductivity, specific heat, magnetization, and thermoelectric power. The amplitude of the spin-Seebeck effect in GaMnAs scales with the thermal conductivity of the GaAs substrate and the phonon-drag contribution to the thermoelectric power of the GaMnAs, demonstrating that phonons drive the spin redistribution. A phenomenological model involving phonon-magnon drag explains the spatial and temperature dependence of the measured spin distribution.Comment: 12 pages, 3 figure

    Charge Transport Properties of a Metal-free Phthalocyanine Discotic Liquid Crystal

    Full text link
    Discotic liquid crystals can self-align to form one-dimensional semiconducting wires, many tens of microns long. In this letter, we describe the preparation of semiconducting films where the stacking direction of the disc-like molecules is perpendicular to the substrate surface. We present measurements of the charge carrier mobility, applying temperature-dependent time-of-flight transient photoconductivity, space-charge limited current measurements, and field-effect mobility measurements. We provide experimental verification of the highly anisotropic nature of semiconducting films of discotic liquid crystals, with charge carrier mobilities of up to 2.8x103^{-3}cm2^2/Vs. These properties make discotics an interesting choice for applications such as organic photovoltaics.Comment: 5 pages, 5 figure
    corecore