20 research outputs found

    Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    Get PDF
    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks

    Hanford Low-activity Waste Glass Composition-temperature-melt Viscosity Relationships

    Get PDF
    This study developed a model for predicting viscosity of alkali-alumino-borosilicate glass melts as functions of composition and temperature. The model is based on a total of 3935 viscosity-temperature data from 574 glasses with viscosity values ranging from 2.53 to 7260 Poise (P) in the temperature range of 900–1260°C. Several different model forms were surveyed, including those based on Arrhenius, Vogel-Fulcher-Tammann, Avramov-Milchev, and Mauro-Yue-Ellison-Gupta-Allen. For each of these models, combinations of the temperature-independent parameters were fitted to composition. It was found that generally fitting more than one temperature-independent parameter as functions of composition resulted in overfitting. The Avramov-Milchev-based model was found to best represent the Hanford low-activity waste glass melt viscosity data based on model fit and validation statistics. A 21-term partial quadratic mixture model was recommended for use. This model predicts melt viscosity with a root-mean square error of.1736 ln(P), which is similar to the error in viscosity measurements from replicate glass analyses of.1383 ln(P). Viscosity was found to be most increased by SiO2 \u3e Al2O3 \u3e ZrO2 \u3e SnO2 and most decreased by Li2O \u3e Na2O \u3e B2O3 \u3e CaO \u3e K2O \u3e MgO, at temperatures from 900 to 1260°C

    Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    Get PDF
    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks

    Solving a multistage partial inspection problem using genetic algorithms

    Get PDF
    The article of record as published may be found at http://dx.doi.org/101080/00207540210123337Traditionally, the multistage inspection problem has been formulated as consisting of a decision schedule where some manufacturing stages receive full inspection and the rest none. Dynamic programming and heuristic methods (like local search) are the most commonly used solution techniques. A highly constrained multistage inspection problem is presented where all stages must receive partial rectifying inspection and it is solved using a real-valued genetic algorithm. This solution technique can handle multiple objectives and quality constraints effectively.US Department of Energy (US)AC06-76RL0183

    Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    No full text
    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities from the synthesis of tris­(2-chloroethyl)­amine (HN3) that point to the reagent and the specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. All the reagent stocks had impurity profiles that differentiated them from one another. This was demonstrated by building classification models with partial least-squares discriminant analysis (PLSDA) and obtaining average stock classification errors of 2.4, 2.8, 2.8, and 11% by cross-validation for chloroform (7 stocks), thionyl chloride (3 stocks), acetone (7 stocks), and TEA (3 stocks), respectively, and 0% for a validation set of chloroform samples. In addition, some reagent impurities indicative of reagent type were found in the HN3 batches that were originally present in the reagent stocks and presumably not altered during synthesis. More intriguing, impurities in HN3 batches that were apparently produced by side reactions of impurities unique to specific TEA and chloroform stocks, and thus indicative of their use, were observed

    Final Report - IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL-07R1240-4

    No full text
    This report is the last in a series of currently scheduled reports that presents the results from the High Level Waste (HLW) glass formulation development and testing work performed at the Vitreous State Laboratory (VSL) of the Catholic University of America (CUA) and the development of IHLW property-composition models performed jointly by Pacific Northwest National Laboratory (PNNL) and VSL for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). Specifically, this report presents results of glass testing at VSL and model development at PNNL for Product Consistency Test (PCT), one-percent crystal fraction temperature (T1%), electrical conductivity (EC), and viscosity of HLW glasses. The models presented in this report may be augmented and additional validation work performed during any future immobilized HLW (IHLW) model development work. Completion of the test objectives is addressed

    Environmental and soil characteristics of the upper and lower sites on Rattlesnake Mountain, Washington, USA.

    No full text
    <p>Environmental data include long-term mean annual temperature (MAT) and precipitation (MAP) based on both older [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0150599#pone.0150599.ref063" target="_blank">63</a>] and recent (unpublished weather station data) sources; this climatic regime has been broadly stable for the last 3000–5000 years [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0150599#pone.0150599.ref064" target="_blank">64</a>]. Soil values are 0–5 cm means±s.d. of the ‘native’ cores sampled from upper and lower sites (N = 24). Bulk density, carbon and nitrogen, particulate organic matter (POM) C, and POM N all differed significantly (P<0.001) between the lower and upper sites. Soil cores were taken from areas of the two sites dominated by <i>Poa</i> spp.</p
    corecore