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Abstract
This study developed a model for predicting viscosity of alkali-alumino-
borosilicate glass melts as functions of composition and temperature. The model
is based on a total of 3935 viscosity-temperature data from 574 glasses with vis-
cosity values ranging from 2.53 to 7260 Poise (P) in the temperature range of
900–1260◦C. Several differentmodel formswere surveyed, including those based
on Arrhenius, Vogel-Fulcher-Tammann, Avramov-Milchev, and Mauro-Yue-
Ellison-Gupta-Allen. For each of thesemodels, combinations of the temperature-
independent parameters were fitted to composition. It was found that gener-
ally fitting more than one temperature-independent parameter as functions of
composition resulted in overfitting. The Avramov-Milchev-based model was
found to best represent the Hanford low-activity waste glass melt viscosity data
based on model fit and validation statistics. A 21-term partial quadratic mix-
ture model was recommended for use. This model predicts melt viscosity with
a root-mean square error of .1736 ln(P), which is similar to the error in viscosity
measurements from replicate glass analyses of .1383 ln(P). Viscosity was found
to be most increased by SiO2 > Al2O3 > ZrO2 > SnO2 and most decreased by
Li2O >Na2O > B2O3 > CaO > K2O >MgO, at temperatures from 900 to 1260◦C.

KEYWORDS
borosilicate, composition effects, glass forming melts, glass forming systems, viscosity

1 INTRODUCTION

Viscosity is a key melt property for glass manufacturing,
including nuclear waste vitrification.1–5 The optimum vis-
cosity for the Joule-heated ceramic waste glass melters
ranges from 20 to 80 Poise (P) at the nominal operating
temperature of 1150◦C.6 A viscosity higher than the opti-
mum range tends to reduce the melter throughput rate

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 Battelle Memorial Institute. International Journal of Applied Glass Science published by American Ceramics Society and Wiley Periodicals LLC. This article has been
contributed to by U.S. Government employees and their work is in the public domain in the USA.

andmay cause difficulties in canister filling. Lower viscosi-
ties increase corrosion of melt contact materials (refracto-
ries, electrodes, bubblers, thermowells, pour-spout trough,
etc.) and increase volatility. At Hanford, the nuclear
waste glass composition is controlled using glass property-
composition models.5,7 Lu et al. found that glass composi-
tions designed for optimal immobilization of Hanford low-
activity waste (LAW)were nearly all limited by an upper or
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TABLE 1 Some of the most frequently referenced viscosity-temperature models in nuclear waste glass science. The table is not intended
to be all-inclusive

Model Examples Functions Pros Cons
Arrhenius (AR) 3,14–17 ln(𝜂) = 𝐴 +

𝐵

𝑇
∙ Fewer parameters
∙ Linear fit

∙ Only applicable over
narrow range

Vogel, Fulcher, and
Tammann (VF)

18–25 ln(𝜂) = 𝐴 +
𝐵

𝑇−𝑇0
∙ Reproduces curvature
in data

∙ Most widely used in
literature

∙ Requires nonlinear fit

Mauro, Yue, Ellison, Gupta,
and Allan (MY)

10 ln(𝜂) = 𝐴 +
𝐵

𝑇
exp(

𝐶

𝑇
) ∙ Reproduces curvature

in data
∙ Represents data well
near glass transition

∙ Nonlinear fit

Avramov and Milchev
(AM)

10,11,26,27 ln(𝜂) = 𝐴 + (
𝐵

𝑇
)𝑎 ∙ Reproduces curvature

in data
∙ Nonlinear fit
∙ Oddly scaled parameters

lower viscosity constraint.8 Effective models for Hanford
waste glass melts are therefore useful and necessary.
Considerable effort has been devoted to the develop-

ment of models describing silicate melt viscosities as
functions of temperature and composition. Reviews and
in-depth assessments of modeling approaches and techni-
cal underpinnings are readily found in the literature.2,9–13
Table 1 presents the most frequently referenced viscosity-
temperature models used in the nuclear waste glass
industry. Each of the temperature-independent parame-
ters (A, B, T0, C, and a) can be expressed as functions
of melt composition. To develop effective viscosity mod-
els as functions of temperature and composition, a reli-
able set of data in the desired composition region is
needed.

1.1 Hanford LAW glass
property-composition database

A database of glass/melt property-composition data has
been collected from 40 separate government reports for
the purposes of developing and validatingmodels for oper-
ation of the LAW Facility at the Hanford Waste Treat-
ment and Immobilization Plant.28 The database compiles
data for 1100 glasses fabricated and tested from 2002 to
2020 by the Catholic University of America (CUA) and
the Pacific Northwest National Laboratory (PNNL). All
data were collected under the strict nuclear quality assur-
ance (NQA-1) standard.29 The glasses cover the range of
compositions currently expected for processing of Hanford
LAW in glass (see Table 2) and were formulated using two
approaches:

1. Actively designed glasses were formulated to immo-
bilize a specific waste composition while satisfying a

host of property requirements. These glasses, primar-
ily tested by CUA, are most useful for determining the
compositions and properties of glasses likely to be pro-
cessed for a specific waste and tend to have significant
correlations in their component concentrations.

2. Statistically designed glasses were formulated to evenly
cover a composition space systematically. These glasses,
primarily tested by PNNL, tend to minimize correla-
tions between glass component concentrations and are
most useful for evaluating composition effects on glass
properties.

The glasses were analyzed for viscosity (574), electri-
cal conductivity (567), product consistency test response
(796),30 vapor hydration test response (773),31 sulfate sol-
ubility (626),32–34 and Monofrax K-3 refractory neck cor-
rosion (344).35 However, not all properties were measured
on each glass composition (numbers in parenthesis repre-
sent number of glasses measured for that property). This
database of 1100 glasses contains 170 replicate glass compo-
sitions, many of which were tested at both CUA and PNNL
to allow for the evaluation of propertymeasurement uncer-
tainties.
The viscosities of 574 glasses were measured over the

temperature range of 900–1260◦C using the rotating
spindle method.36 The viscosity data were collected using
either a Brookfield viscometer (AMETEK Brookfield,
Middleboro, MA) or an Anton Parr viscometer (FRS 1600
Furnace Rheometer System, Ashland, VA). The viscome-
ters (head, Pt crucible, and spindle) were calibrated at
room temperature with National Institute of Standards
and Technology (NIST) traceable oils and validated at
high temperature with standard glasses (NIST standard
reference glass 711 or DWPF Startup frit24). A total of
3935 viscosity-temperature datapoints were measured
with viscosity values ranging from 2.53 to 7260 P. The
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516 HEREDIA-LANGNER et al.

TABLE 2 Hanford low-activity waste (LAW) database glass component concentration ranges (mass fraction)

Component Minimum Maximum Component Minimum Maximum
Al2O3 .0350 0.1475 P2O5 0.0000 0.0403
B2O3 .0600 0.1383 SO3 0.0000 0.0163
CaO .0000 0.1278 SiO2 0.3352 0.5226
Cl .0000 0.0117 SnO2 0.0000 0.0503
Cr2O3 .0000 0.0063 TiO2 0.0000 0.0501
F .0000 0.0130 V2O5 0.0000 0.0409
Fe2O3 .0000 .1198 ZnO .0000 .0582
K2O .0000 .0590 ZrO2 .0000 .0675
Li2O .0000 .0584 SOM‡ .0000 .0033
MgO .0000 .0502 NAlk* .1350 .2702
Na2O .0247 .2657 SiO2 + 1.697Al2O3

§ .0000 .6160
*NAlk = Na2O+.66K2O+2.07 Li2O.
‡SOM = sum of minors, including: Ag2O, BaO, Br, CdO, Cs2O, I, MnO, MoO3, NiO, PbO, Re2O7, SeO2, SrO, and WO3.
§A combined SiO2 and Al2O3 constraint was added to avoid region with little data where both these components are high in concentration.

relatively narrow temperature-viscosity ranges were
selected to include those immediately adjacent to the
planned operating temperature of 1150◦C and viscosity
range of 20–80 P. In this temperature range, Hanford
LAW glasses show Newtonian behavior and are not
subject to crystallization, making viscosity determination
straightforward. For many of the glasses, the viscosity
was measured first at the nominal melting temperature
(1150◦C) then dropping to the lowest temperature, return-
ing to 1150◦C, raising to the maximum temperature, and
again returning to 1150◦C. This process allowed for the
potential effects of crystallization and/or volatility to be
assessed.
Evaluation of the compositions of the 574 glasses identi-

fied 15 composition outliers (those glasses not falling in the
composition region listed in Table 2), which were removed
from further evaluation. A dataset containing 25 statisti-
cally designed glasses was separated from the database for
use as an externalmodel validation set,37 leaving 534model
development glasses with 3765 η-T datapoints. To visual-
ize the space covered by the compositions of the avail-
able glasses and assess the coverage of the validation set,
a principal component analysis was applied to the compo-
sition data. Figure 1 shows a plot of the composition for all
534 model fit composition + 25 external validation com-
positions using the first two principal components, which
accounted for nearly 70% of the total variability in the joint
dataset. The plot indicates that glasses in the external val-
idation set provided a good coverage of the overall space,
forming a good basis to assessmodel performance and help
in model selection.
The relative standard deviation from replicate glassmea-

surements is on the order of .1383 (based on ln(η, P)), sug-
gesting that predictive models will not be able to predict
viscosity with higher precision.

F IGURE 1 Principal components plot of model fit (black dots)
and external validation (red asterisks) glass compositions

1.2 Modeling methodology

Empirical models were developed to predict viscosity (η
or resistance to flow) of Hanford LAW glasses as func-
tions of both melt temperature and composition. In this
work, the 3765 η-T data were fitted to Arrhenius (AR),
Vogel-Fulcher-Tammann (VF), Avramov-Milchev (AM),
andMauro-Yue-Ellison-Gupta-Allen (MY)models, assum-
ing composition dependence of the different temperature-
independent parameters (e.g., A(g), B(g), C(g), T0(g), and
a(g)). A set of example model forms fitted to the data are
shown in Table 3, where g is the glass composition in mass
fractions expressed as a vector; T is the absolute temper-
ature (in K); and A, B, C, T0, and a are model param-
eters that were estimated from the experimental data.
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HEREDIA-LANGNER et al. 517

TABLE 3 Model forms used to fit viscosity as a function of glass composition and temperature*

Type Single-composition term Two-composition terms Three-composition terms
AR ln(𝜂) = 𝐴(𝐠) +

𝐵

𝑇

ln(𝜂) = 𝐴 +
𝐵(𝐠)

𝑇

ln(𝜂) = 𝐴(𝐠) +
𝐵(𝐠)

𝑇
Not applicable

VF ln(𝜂) = 𝐴(𝐠) +
𝐵

(𝑇−𝑇0)

ln(𝜂) = 𝐴 +
𝐵(𝐠)

(𝑇−𝑇0)

ln(𝜂) = 𝐴 +
𝐵

(𝑇−𝑇0(𝐠))

ln(𝜂) = 𝐴 +
𝐵(𝐠)

(𝑇−𝑇0(𝐠))
ln(𝜂) = 𝐴(𝐠) +

𝐵(𝐠)

(𝑇−𝑇0(𝐠))

AM ln(𝜂) = 𝐴(𝐠) +
(
𝐵

𝑇

)𝑎

ln(𝜂) = 𝐴 +
(
𝐵(𝐠)

𝑇

)𝑎

ln(𝜂) = 𝐴 +
(
𝐵

𝑇

)𝑎(𝐠)

ln(𝜂) = 𝐴 +
(
𝐵(𝐠)

𝑇

)𝑎(𝐠)

ln(𝜂) = 𝐴(𝐠) +
(
𝐵(𝐠)

𝑇

)𝑎
ln(𝜂) = 𝐴(𝐠) +

(
𝐵(𝐠)

𝑇

)𝑎(𝐠)

MY ln(𝜂) = 𝐴 +
𝐵(𝐠)

𝑇
exp

(
𝐶

𝑇

)
ln(𝜂) = 𝐴 +

𝐵(𝐠)

𝑇
exp

(
𝐶(𝐠)

𝑇

)
ln(𝜂) = 𝐴(𝐠) +

𝐵(𝐠)

𝑇
exp

(
𝐶(𝐠)

𝑇

)

Abbreviations: AM, Avramov-Milchev; AR, Arrhenius; MY, Mauro-Yue-Ellison-Gupta-Allen; VF, Vogel-Fulcher-Tammann.
*An AR-based model was also fitted to a version same dataset with the viscosity values >1000 P removed to improve linearity by Ferkl et al. (2022)39.

Each of these parameters has physical interpretation. For
example:

∙ A is the preexponential or the limiting ln(η) at infinite
temperature;

∙ B is related to the apparent activation energy (by the neg-
ative of the universal gas constant);

∙ C is related to the energy difference between connected
and disconnected states; and

∙ T 0 is the temperature atwhich ln(η) approaches infinity.

Each parameter in this study was fit to glass composi-
tions using all glass components and a reduced set of glass
components by combining those components having lit-
tle effect on viscosity in the concentration ranges of our
database, such as Cl, Cr2O3, F, and SO3, along with sum
of minors, into an “Others” term. In general, the mod-
eling approach used to obtain parameter estimates con-
sisted of imputing formatted data in MATLAB (version
R2019b, MathWorks, Natick, MA). For AR-based models,
ordinary least squares can be directly used to obtain model
parameter estimates that are guaranteed to haveminimum
variance in the class of unbiased linear estimators.38
Nonlinear models were fit using numeric optimization
routines nlinfit function in MATLAB or Nonlinear Fit in
JMP-Pro version 16.0.0 (SAS Institute, Cary, NC). These
routines require an initial estimate for the model param-
eters (seed values), and the result obtained can depend on
the input provided to the algorithm. To minimize instabil-
ity, initial estimates were equal to linear fit values of the
similar linear models (e.g., AR), with initial estimates for
additional parameters obtained after using the fminsearch
routine in MATLAB. To ensure stability, model parame-
ter estimates for nonlinear models obtained after using
the nlinfit function were used as inputs again until no
appreciable changes between successive iterations were
observed. The MATLAB nlinfit function was used for fit-

ting all models. Selected models were checked using the
nonlinear fit function in JMP.
Our previous viscosity-temperature-composition

modeling effort employed a generalized least squares
with split-plot data structure in which the whole-plot
was represented by composition and the split-plot by
temperature.27 In theory, the split-plot approach makes
sense given the structure of the data; however, it is possible
that the following assumptions are not applicable to the
current dataset: (1) That a constant variance is common
to every whole-plot (each composition) and (2) that the
variability in terms of the model can be best explained
by the whole-plot and split-plot structure. Given that
the glasses were fabricated and tested by many people,
different laboratories, and over an extended period, it may
not be reasonable to assume that the whole-plot variance
will remain constant. Application of the whole-plot/split-
plot approach to available data resulted in significantly
higher prediction error, and larger residuals then were
found for ordinary least squares regression and nonlinear
regression. For these reasons, the split-plot data structure
was not used.
Models were evaluated based on R2, adjusted-R2 (adj-

R2), root-mean-squared errors (RMSEs) for predictions
made on the external set of 25 glasses, width of a 90%
confidence interval (CI) for a reference glass at 1150◦C, and
by model complexity. It is well known that when fitting
the types of models used in this work, certain interactions
between components can have a significant effect on
viscosity.40 Consideration of higher order terms, like inter-
actions and quadratic effects, can substantially increase
the number of potential models that need to be examined,
making the analysis of all possible models impracti-
cal. Model selection techniques such as forward and
backward selection, available in many commercial
software packages (e.g., JMP, R, MATLAB), allow for
sequential model-building, avoiding the need to explore
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518 HEREDIA-LANGNER et al.

all possible models. Stepwise model building algorithms,
like forward and backward selection, seek to improve an
optimality criterion, such as maximizing R2 or improving
the value of sum-of-squared errors (SSE), by adding or
removing the term that most improves the optimality
criterion based on the current model until no further
improvement is possible. Because these algorithms oper-
ate in a locally optimal way, there is no guarantee that
a globally optimum model will be found. Additionally,
stepwise model selection techniques are not generally
available for nonlinear models, further complicating the
selection process. For these reasons, only a few models
with good performance were selected for additional
analysis in most cases.
Additional exploration involved incorporating interac-

tions between pairs of components and quadratic compo-
nent effects that may produce changes in model predic-
tions that cannot be captured using purely linear com-
ponent effects. So, the top performing model (AM) was
selected to evaluate nonlinear composition terms. This
model form has good performance across the measures
selected for evaluation and also has among the fewest
model parameters. Selecting parsimonious models is gen-
erally considered good practice to avoid potential overfit-
ting. In addition to limiting the number of model forms
chosen for further analysis, only those components that
are likely to have significant interaction effects on viscosity
based on previously known results were chosen for addi-
tionalmodel development. Components selected for inclu-
sion as higher order terms are Al2O3, B2O3, K2O, Li2O,
Na2O, CaO, SiO2, and ZrO2. All possible combinations of
one purely quadratic term and one, two, and three two-
factor interactions of these components were considered.
This resulted in 1142 AM partial quadratic models (PQMs)
fitted for evaluation.
As with the initial analysis of all model forms,

goodness of fit statistics, including RMSE, R2,
and adj-R2 for the modeling set and prediction
SSE(= Σ[ln (𝜂)pred − ln (𝜂)meas]

2
) (or validation RMSE)

using data from the 25-glass external validation set, were
used to evaluate model performance. These results guided
the selection of one or more models to be used in practice.
The width of a 90% CI for ln(η) prediction at 1150◦C for
a representative glass composition was also used as a
parameter for evaluating model quality.38

2 RESULTS

The 17 models described in Table 3 were fitted to 3765
η-T data, and the resulting models were used to predict
the response of the 25-glass (150 η-T data point) external
validation set. It was apparent from the fits that all AR-

based models resulted in curvature in the residuals ver-
sus predicted plot (as shown in Figure 2A). This curvature
was present in both the AR models and the MY single-
composition-term model and not in any of the other mod-
els. For comparison, Figure 2B shows the residuals versus
predicted plot for the single-composition-term VFmodels,
which is typical of all other models. The bias predictions
observed with the ARmodel are due to the inherent curva-
ture in ln(η) versus inverse temperature in fragile liquids10
that can be seen even over the narrow viscosity range of
this data (2.53–7260 P or .9–9 ln(P)). The statistics of each
of the fits are summarized in Table 4.
Figure 3 shows the R2 values frommodel fit, subset vali-

dation, 25-glass external validation set, and 90% CI average
width for the glasses in themodeling set as functions of the
number of model terms and model type. For each model
form, if only one term is composition-dependent, the B-
term yields the best results (followed by A for AR form, T0
for VF form, and a for AM form).
The model fit and subset validation statistics improve

with the number of terms for each model form nearly
across the board. The exception to this trend is the single
composition term models with non-B composition terms.
The trend is different for the 25-glass external validation
statistics, where often models with the most terms pro-
duce worse results than simpler, smaller ones, potentially
indicating overfitting. The average 90% CI width generally
growswith the number of parameters withAR-basedmod-
els being higher. Although the ranking of models differed
between evaluation statistics, the AM models were gener-
ally ranked the best for each evaluation statistic. Of the
AM models, the single-composition-term reduced-linear-
mixture (RLM) performed best on the validation set R2
among models with the fewest terms. Therefore, the AM
1B-RLMmodel, the model with B as the only composition-
dependent term, was selected for further analysis. The
coefficients for the models developed using the AM 1B-
RLM as a starting point are listed in Table 5, and pre-
dicted versus measured plot is given in Figure 4. The coef-
ficients and summary statistics for the best fitting AR, VF,
and MY models are given in Supplemental Information
Table S1.
Plots of SSEs for prediction on the 25-glass external val-

idation set against the RMSE for modeling set using the
AM PQMs are shown in Figure 5. Figure 6 shows the
widths of 90% CIs for a reference glass (roughly center of
composition region) against the adj-R2 for the 1142 PQMs
models. There is a broad range of goodness parameters
across the 1142 PQMs with different rankings of models
depending onwhich parameter is selected. (Shorter CIs are
generally associatedwith better predictive performance.)38
The model with the following cross-product and quadratic
terms was selected based on the lowest validation set SSE
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HEREDIA-LANGNER et al. 519

F IGURE 2 Example residual versus predicted plots (where ln(η) is shown in ln(P)) for (A) AR and (B) VF single-composition-term
models

F IGURE 3 R2 values for model fit as a function of number of model terms for (A) model fit, (B) subset validation, (C) 25-glass external
validation, and (D) average width of the 90% confidence intervals for the modeling dataset
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520 HEREDIA-LANGNER et al.

TABLE 4 Summary of model fit and validation statistics

Model g Form
# of
parameters

Fit
RMSE Fit R2

Fit
Adj-R2

Subset
RMSE

Subset
R2

Val
RMSE Val R2

Average
90% CI
width

AR 1A-FLM 21 .204 .9782 .9781 .206 .9778 .236 .9166 .0474
1A-RLM 17 .212 .9765 .9764 .213 .9762 .232 .9190 .0438
1B-FLM 21 .189 .9813 .9812 .190 .9810 .215 .9309 .0438
1B-RLM 17 .197 .9797 .9796 .198 .9794 .213 .9321 .0407
2-FLM 40 .173 .9844 .9842 .175 .9839 .194 .9434 .0540
2-RLM 32 .182 .9827 .9826 .184 .9823 .203 .9380 .0501

VF 1A-FLM 22 .194 .9803 .9802 .174 .9841 .201 .9392 .0463
1A-RLM 18 .201 .9789 .9788 .181 .9828 .201 .9392 .0430
1B-FLM 22 .173 .9844 .9843 .174 .9841 .201 .9392 .0409
1B-RLM 18 .180 .9830 .9829 .181 .9829 .201 .9392 .0383
1T-FLM 22 .175 .9841 .9840 .176 .9838 .204 .9375 .0410
1T-RLM 18 .182 .9826 .9825 .183 .9824 .195 .9427 .0384
2-FLM 41 .158 .9870 .9869 .160 .9866 .185 .9488 .0493
2-RLM 33 .167 .9854 .9853 .169 .9850 .189 .9465 .0462
3-FLM 60 .150 .9885 .9883 .152 .9879 .193 .9439 .0564
3-RLM 48 .158 .9870 .9869 .161 .9864 .260 .8987 .0518

AM 1A-FLM 22 .194 .9803 .9802 .195 .9800 .234 .9176 .0463
1A-RLM 18 .201 .9789 .9788 .178 .9834 .195 .9431 .0430
1B-FLM 22 .170 .9849 .9848 .171 .9847 .200 .9400 .0401
1B-RLM 18 .178 .9835 .9835 .178 .9834 .195 .9431 .0376
1a-FLM 22 .173 .9843 .9842 .174 .9841 .201 .9393 .0408
1a-RLM 18 .181 .9829 .9828 .182 .9827 .195 .9430 .0382
2a-FLM 41 .158 .9870 .9869 .160 .9865 .249 .9071 .0490
2a-RLM 33 .167 .9855 .9854 .169 .9851 .304 .8614 .0456
2A-FLM 41 .158 .9871 .9870 .159 .9867 .180 .9514 .0496
2A-RLM 33 .166 .9857 .9855 .168 .9853 .199 .9408 .0463
3-FLM 60 .149 .9886 .9884 .151 .9880 .236 .9167 .0561
3-RLM 48 .157 .9872 .9871 .160 .9865 .276 .8859 .0516

MY 1-FLM 22 .173 .9844 .9843 .174 .9841 .200 .9397 .0408
1-RLM 18 .180 .9830 .9829 .181 .9829 .201 .9394 .0382
2-FLM 41 .159 .9869 .9868 .161 .9864 .231 .9201 .0493
2-RLM 33 .168 .9854 .9853 .169 .9850 .243 .9114 .0459
3-FLM 60 .150 .9885 .9883 .152 .9879 .199 .9404 .0565
d3-RLM 48 .158 .9871 .9870 .160 .9865 .265 .8951 .0519

Abbreviations: AM, Avramov-Milchev; AR, Arrhenius; CI, confidence interval; MY, Mauro-Yue-Ellison-Gupta-Allen; FLM, full-linear-mixture; RLM, reduced-
linear-mixture; RMSE, root mean squared errors; VF, Vogel-Fulcher-Tammann.

and generally low model fit RMSE and 90% CI width:
Al2O3 × Na2O, SiO2 × ZrO2, and Na2O × Na2O. Note that
no single model performed best on all criteria.
Table 5 lists model parameter estimates for the selected

model. A plot of predicted versus measured ln(η) is given
in Figure 7.Model fit and external validation statisticswere
significantly improved by the addition of three non-linear
terms.

3 DISCUSSION

There is a need for accurate and precise prediction of Han-
ford LAW glass melt viscosity to optimize glass composi-
tion and facilitate efficient plant operations. By evaluat-
ing a series of example temperature-composition-viscosity
models, it became clear that there are multiple potentially
successful models all with RMSEs on the same order as
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TABLE 5 Selected single-composition-term RLM and PQM
model coefficients for the AMmodel form*

Term AMRLM AM PQM
A −2.0579 −2.1483
A 2.2838 2.2520
Al2O3 5701.7808 4522.3515
B2O3 942.3703 1020.4357
CaO 1106.2752 1260.0231
Fe2O3 2599.7249 2762.4187
K2O 1444.3510 1673.1286
Li2O −5365.8759 −5264.2734
MgO 2182.2295 2373.9846
Na2O 409.3835 291.4697
P2O5 3636.8594 3984.1403
SiO2 4793.7353 4921.0864
SnO2 4140.2617 4388.7692
TiO2 2260.8158 2401.3011
V2O5 1766.1165 1985.4762
ZnO 1768.2457 1826.5884
ZrO2 4581.3414 3659.8543
Others 3572.0333 3503.1550
Al2O3 × Na2O n/a 7674.5414
SiO2 × ZrO2 n/a 2602.8079
Na2O × Na2O n/a −996.9091
Fit R2 .9835 .9843
Fit RMSE .1775 .1736
Val R2 .9701 .9755
Val RMSE .1947 .1762

Abbreviations: AM, Avramov-Milchev; PQM partial quadratic model; RLM,
reduced-linear-mixture; RMSE, root mean squared errors, n/a, not applicable.

F IGURE 4 Predicted versus measured ln(η, P) for the
single-composition-term reduced-linear-mixture (RLM)
Avramov-Milchev (AM) model. Blue points represent points used
during model-building, and red points represent validation points

F IGURE 5 Sum-of-Squared Errors (SSE) for predictions using
the 25-glass external validation set against the root-mean-squared
errors (RMSEs) (in ln(P)) for the modeling set for each of the 1142
partial quadratic model (PQM) models. Red square is the
recommended model

F IGURE 6 Widths of 90% confidence intervals (CIs) (in ln(P))
for a reference glass at 1150◦C against the adj-R2 for modeling set for
1142 partial quadratic model (PQM) models. Red square is the
recommended model

the experimental uncertainty obtained from replicate glass
measurement (.138 ln(P)). Even so, the AM model form
does seem to slightly outperform the other tested forms for
this dataset.
It was interesting to see that for model forms AR, VF,

and AM, which fit one of the temperature-independent
values as a function of composition (g), the goodness of
fit was similar no matter which temperature-independent
parameter was composition dependent (a, A, B, T0). How-
ever, in each case, there was a slight advantage of fitting
B(g) over the other parameters. This suggests that themost

 20411294, 2022, 4, D
ow

nloaded from
 https://ceram

ics.onlinelibrary.w
iley.com

/doi/10.1111/ijag.16580 by M
issouri U

niversity O
f Science, W

iley O
nline L

ibrary on [30/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



522 HEREDIA-LANGNER et al.

F IGURE 7 Predicted versus measured ln(η, P) for the selected
partial quadratic model (PQM) model. Blue points represent model
fit data; red points represent validation data

significant compositional effect in this composition region
is related to the apparent activation energy for viscous flow.
Fitting multiple parameters as functions of composition
tended to reduce themodel fit RMSE but increased the val-
idation RMSE, suggesting an overfitting.
The AR-based models showed biased predictions with

a clear curvature pattern present in the residual plot due
to the general fragility of these melts; Figure S1 in the
Supplemental Information compares the fragility of a rep-
resentative subset of these melts with the liquids evalu-
ated by Angell.41 The AMmodel does not represent the full
temperature-viscosity relationship, nor do any models fit-
ted to such a narrow range of viscosity values. To demon-
strate that point, the best fitting AR, AM, VF, andMYmod-
els (from Supplemental Information Section S3) are used
to predict the response of one of the dataset glasses and
extrapolated to high- and low-temperatures in Figure 8.
The glass, LAWA44, was selected for this demonstration
because it was measured in replicate and had replicate
glass transition temperature (Tg)measurements. Tg is plot-
ted on the figure with an assumed viscosity of 1013 P. It is
interesting that three of the four models result in reason-
able correlation to the assumed log[ηTg, P] = 13 with the
VF nearly predicting the value exactly. However, the AM
model should not be extrapolated down in temperature.
The three nonlinear models (AM, VF, and MY) all predict
similar infinite temperature viscosities: 10−1.93, 10−2.71, and
10−2.41 Pa⋅s, respectively – close to but above the universal
infinite temperature viscosity identified by Zheng for sil-
icate liquids (10−2.93 Pa⋅s).42 To precisely obtain the infi-
nite temperature viscosity for Hanford LAW glasses would

F IGURE 8 Extrapolation of viscosity predictions of LAWA44
glass to high- and low-temperature

require viscosity data over a broader temperature range
than was available in this dataset.
The composition effects on viscosity can be estimated

using response trace plots (plots showing the effect on
the response to increasing or decreasing concentration of
a single component for a reference glass while relative
proportions of the rest remain constant). Figure 9 shows
response trace plots for the selected AM-PQM model at
950, 1050, 1150, and 1250◦C taken at the reference glass
composition. These plots were generated by selecting a
reference composition (the nominal average of compo-
sitions in the database) and varying one-component-at-
a-time over its available range while renormalizing the
other component concentrations. The predicted ln(η, P)
values obtained are then plotted versus component con-
centration change. From the plots, it can be seen that
across all temperatures, viscosity is most increased by
SiO2 > Al2O3 > ZrO2 > SnO2 and most decreased by
Li2O > Na2O > B2O3 > CaO > K2O > MgO. Many previ-
ous studies have shown similar component effects ranking
for viscosity.9,14–17,23,43–45 As expected, the effects of alkali
group oxides, alkaline earth group oxides, and SiO2, Al2O3,
ZrO2, and SnO2 are in order with cation field strength.

4 CONCLUSION

Adatabase suitable formodeling the key properties ofHan-
ford LAW glasses was collected, including viscosity data
for 574 glasses with viscosities ranging from 2.53 to 7260
P within the temperature range of 900–1260◦C. A total of
3765 of the 3935 η-T-composition datapoints were used to
develop viscosity models as functions of both temperature
and composition,with an additional 150 points reserved for
validation. Nearly 3000 different models were developed
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HEREDIA-LANGNER et al. 523

F IGURE 9 Component response trace plots of predicted ln(η, P) versus single component concentration change from reference glass
composition (in mass fraction) at various temperatures

based on AR, AM, VF, andMY functional forms with com-
position represented as full- and reduced-linear-mixture
and partial-quadratic-mixture models (FLM, RLM, PQM;
respectively). Thesemodels were evaluated using standard
statisticalmeasures.Many of themodelswere found to pre-
dict ln(η) roughly as precisely as it can bemeasured (based
on results from replicate measurements), although of all
the models, those based on the AM appeared to perform
the best for this dataset. A 21-parameter PQM based on
AM functional form was recommended for use in design
of glasses and control of melter operation at the Hanford
Site (with a variance-covariance matrix in Supplemental
Information Section S3). This model accurately predicts
ln(η) with a precision (RMSE) of .1736 ln(P), close to that of
replicate glassmeasurement uncertainty. Thismodel is not
appropriate for extrapolation in either temperature or com-

position from the ranges used in its development. Differ-
ent aspects of model fitting and composition-temperature
effects on viscosity are also presented for use by the broader
glass science arena.
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