1,977 research outputs found
Comparing Public Preprimary Systems in South Carolina & Estonia: Closing Gaps in Educational Opportunities
The following research aims to explore and compare the assets and drawbacks of the public preprimary education systems in Estonia and South Carolina for the purpose of developing policy recommendations for altering funding systems to expand access. First, preprimary education is defined along with its importance, effectiveness, and affordability. Next, funding continuity and public funding are discussed with relation to public preprimary programs. Then a basis is established for comparing Estonia and South Carolina. The methods and limitations are described. A deep dive of data organizes the programmatic and funding data of Estonia and South Carolina, highlighting enrollment, providers, curriculum, educator qualifications and compensation, preprimary funding, and primary funding. The data tell a story of two preprimary systems that result in distinct outcomes for students. South Carolina provides limited access to public preprimary education for some of the students who need it most. Further, state policies operate on the notion that early childhood education is largely outside the realm of public schooling. Subsequently, South Carolina has low enrollment in public preprimary programs and is not effectively utilizing early childhood education as a policy lever to close gaps in educational outcomes and opportunities. Estonia operates an organized system of public preprimary education that is funded and operated in a manner similar to the primary school system. Subsequently, Estonia has high rates of preprimary education enrollment and highly equitable opportunities and outcomes for students. Analysis results in three policy recommendations for improving access, availability, and continuity of preprimary programs. These recommendations support improving continuity between preprimary programs, removing silos between preprimary and primary education systems, and eliminating parental contributions toward tuition
Absolute Frequency Measurement of the lLevel of Neutral Using Two-Photon Spectroscopy
We report absolute frequency measurements on the level of neutral using sub-Doppler two-photon spectroscopy. The absolute center-of-gravity energy for the level is determined to be , a factor of 170 times improvement over the previous measurement from 1964 of . This measurement also corrects a discrepancy with the previously measured value. The hyperfine coefficients were found to be and , which are consistent with previous results
Pulsed Triple Frequency Modulation for Frequency Stabilization and Control of Two Lasers to an Optical Cavity
We present a method to stabilize two lasers to an optical cavity using pulsed triple frequency modulation. The setup allows simultaneous Pound–Drever–Hall stabilization, as well as independent frequency control, while removing interference terms that limit the frequency scan range and allowing for smaller modulation depths. A review of single, dual, and triple frequency modulation is also presented in addition to a discussion of how to effectively turn pulsed triple frequency modulation into independent dual frequency modulation for each laser. This method would increase the scan range to half the free spectral range
Speech and language therapy versus placebo or no intervention for speech problems in Parkinson's disease
Parkinson's disease patients commonly suffer from speech and vocal problems including dysarthric speech, reduced loudness and loss of articulation. These symptoms increase in frequency and intensity with progression of the disease). Speech and language therapy (SLT) aims to improve the intelligibility of speech with behavioural treatment techniques or instrumental aids
Compound-specific Carbon Isotope Compositions of Aldehydes and Ketones in the Murchison Meteorite
Compoundspecific carbon isotope analysis (13C) of meteoritic organic compounds can be used to elucidate the abiotic chemical reactions involved in their synthesis. The soluble organic content of the Murchison carbonaceous chondrite has been extensively investigated over the years, with a focus on the origins of amino acids and the potential role of Streckercyanohydrin synthesis in the early solar system. Previous 13C investigations have targeted amino acid and hydroxy acid Strecker products and reactant HCN; however, 13C values for meteoritic aldehydes and ketones (Strecker precursors) have not yet been reported. As such, the distribution of aldehydes and ketones in the cosmos and their role in prebiotic reactions have not been fully investigated. Here, we have applied an optimized O(2,3,4,5,6pentafluorobenzyl)hydroxylamine (PFBHA) derivatization procedure to the extraction, identification, and 13C analysis of carbonyl compounds in the Murchison meteorite. A suite of aldehydes and ketones, dominated by acetaldehyde, propionaldehyde, and acetone, were detected in the sample. 13C values, ranging from 10.0 to +66.4, were more 13Cdepleted than would be expected for aldehydes and ketones derived from the interstellar medium, based on interstellar 12C/13C ratios. These relatively 13Cdepleted values suggest that chemical processes taking place in asteroid parent bodies (e.g., oxidation of the IOM) may provide a secondary source of aldehydes and ketones in the solar system. Comparisons between 13C compositions of meteoritic aldehydes and ketones and other organic compound classes were used to evaluate potential structural relationships and associated reactions, including Strecker synthesis and alterationdriven chemical pathways
Martian low-temperature alteration materials in shock-melt pockets in Tissint: Constraints on their preservation in shergottite meteorites
We apply an array of in situ analytical techniques, including electron and Raman microscopy, electron and ion probe microanalysis, and laser ablation mass spectrometry to the Tissint martian meteorite in order to find and elucidate a geochemical signature characteristic of low-temperature alteration at or near the martian surface. Tissint contains abundant shock-produced quench-crystallized melt pockets containing water in concentrations ranging from 73 to 1730 ppm; water content is positively correlated with Cl content. The isotopic composition of hydrogen in the shock-produced glass ranges from δD = 2559 to 4422 ‰. Water is derived from two distinct hydrogen reservoirs: the martian near-surface (>500 ‰) and the martian mantle (-100 ‰). In one shock melt pocket comprising texturally homogeneous vesiculated glass, the concentration of H in the shock melt decreases while simultaneously becoming enriched in D, attributable to the preferential loss of H over D to the vesicle while the pocket was still molten. While igneous sulfides are pyrrhotite in composition (Fe_(0.88-0.90)S), the iron to sulfur ratios of spherules in shock melt pockets are elevated, up to Fe_(1.70)S, which we attribute to shock-oxidation of igneous pyrrhotite and the formation of hematite at high temperature. The D- and Cl-enrichment, and higher oxidation of the pockets (as indicated by hematite) support a scenario in which alteration products formed within fractures or void spaces within the rock; the signature of these alteration products is preserved within shock melt (now glass) which formed upon collapse of these fractures and voids during impact shock. Thermal modeling of Tissint shock melt pockets using the HEAT program demonstrates that the shock melt pockets with the greatest potential to preserve a signature of aqueous alteration are small, isolated from other regions of shock melt, vesicle-free, and glassy
Tonic inhibition of accumbal spiny neurons by extrasynaptic 4 GABAA receptors modulates the actions of psychostimulants
Within the nucleus accumbens (NAc), synaptic GABAA receptors (GABAARs) mediate phasic inhibition of medium spiny neurons (MSNs) and influence behavioral responses to cocaine. We demonstrate that both dopamine D1- and D2-receptor-expressing MSNs (D-MSNs) additionally harbor extrasynaptic GABAARs incorporating α4, β, and δ subunits that mediate tonic inhibition, thereby influencing neuronal excitability. Both the selective δ-GABAAR agonist THIP and DS2, a selective positive allosteric modulator, greatly increased the tonic current of all MSNs from wild-type (WT), but not from δ−/− or α4−/− mice. Coupling dopamine and tonic inhibition, the acute activation of D1 receptors (by a selective agonist or indirectly by amphetamine) greatly enhanced tonic inhibition in D1-MSNs but not D2-MSNs. In contrast, prolonged D2 receptor activation modestly reduced the tonic conductance of D2-MSNs. Behaviorally, WT and constitutive α4−/− mice did not differ in their expression of cocaine-conditioned place preference (CPP). Importantly, however, mice with the α4 deletion specific to D1-expressing neurons (α4D1−/−) showed increased CPP. Furthermore, THIP administered systemically or directly into the NAc of WT, but not α4−/− or α4D1−/− mice, blocked cocaine enhancement of CPP. In comparison, α4D2−/− mice exhibited normal CPP, but no cocaine enhancement. In conclusion, dopamine modulation of GABAergic tonic inhibition of D1- and D2-MSNs provides an intrinsic mechanism to differentially affect their excitability in response to psychostimulants and thereby influence their ability to potentiate conditioned reward. Therefore, α4βδ GABAARs may represent a viable target for the development of novel therapeutics to better understand and influence addictive behaviors
The relevance of ERTS-1 data to the state of Ohio
There are no author-identified significant results in this report
- …