65 research outputs found

    Influence of bridging and chelating co-ligands on the distinct single-molecule magnetic behaviours in ZnDy complexes

    Get PDF
    Four new heterometallic ZnDy complexes, [ZnDy(L)(NO3) 3(py)] CH2 Cl2 (1) (py stands for pyridine), [ZnDy(L)(m-OAc)(OAc)2] 3H2 O (2), [ZnDy(L)(m-OAc)(OAc)(NO 3)] (3), and [ZnDy(L)(m-piv)(piv)2][ZnDy(L) (m-piv)(piv)(OAc)] 1.5H2O (4), have been synthesized from a methyl substituted o-vanillin based compartmental Schiff base ligand, N,N0-bis(3-methoxy-5-methylsalicylidene)-1,2-phenylenediamine (H2L), in association with various secondary co-ligands like acetate (OAc), nitrate and pivalate (piv), and magneto-structurally characterised. They possess a nearly identical [Zn(II)–Dy(III)] core, bridged by the phenoxo-O atoms of the compartmental Schiff base ligand. Magnetic studies revealed the distinct single- molecule magnetic (SMM) behaviours through single to multiple relaxation channels, in which 1, 2 and 4 can display slow relaxation of magnetisation at a zero dc field, the performance of which can be further improved by applying a magnetic field at the expense of the reduction of under barrier relaxation processes, while 3 shows only field-induced weaker slow magnetic relaxation behaviours. Ab initio calculations were performed for the in-depth understanding of the magnetic dynamics in these complexes. The difference in the magnetic behaviours of the four complexes can be ascribed to the effect of bridging/chelating co-ligands in these complexes. Therefore, the present report highlights that the magnetic anisotropy is sensitive to the bridging/chelating co-ligands used, leading to the distinct magnetic dynamics in these systems.publishe

    Halogen Bonding in New Dichloride-Cobalt(II) Complex with Iodo Substituted Chalcone Ligands

    Get PDF
    The synthesis and properties of new chalcone ligand 4I-L ((2E)-1-[4-(1H-imidazol-1-yl)phenyl]-3-(4-iodophenyl)prop-2-en-1-one) and tetracoordinate Co(II) complex [Co(4I-L)(2)Cl-2], (1a), are reported in this article. Upon recrystallization of 1a, the single crystals of [Co(4I-L)(4)Cl-2]center dot 2DMF center dot 3Et(2)O (1b) were obtained and crystal structure was determined using X-ray diffraction. The non-covalent interactions in 1b were thoroughly analyzed and special attention was dedicated to interactions formed by the peripheral iodine substituents. The density functional theory (DFT), atoms in molecule (AIM) and noncovalent interaction (NCI) methods and electronic localization function (ELF) calculations were used to investigate halogen bond formed between the iodine functional groups and co-crystallized molecules of diethyl ether

    Co(II)-Based single-ion magnets with 1,1 '-ferrocenediyl-bis(diphenylphosphine) metalloligands

    Get PDF
    Herein, we report on investigations of magnetic and spectroscopic properties of three heterobimetallic Fe(ii)-Co(ii) coordination compounds based on the tetracoordinate {CoP2X2} core encapsulated by dppf metalloligand, where X = Cl (1), Br (2), I (3), dppf = 1,1 '-ferrocenediyl -bis(diphenylphosphine). The analysis of static magnetic data has revealed the presence of axial magnetic anisotropy in compounds (1) and (2) and this was further confirmed by high-frequency electron spin resonance (HF-ESR) spectroscopy. Dynamic magnetic data confirmed that (1) and (2) behave as field-induced Single-Ion Magnets (SIMs). Together with bulk studies, we have also tested the possibility of depositing (2) as thick films on Au(111), glass, and polymeric acetate by drop-casting as well as thermal sublimation, a key aspect for the development of future devices embedding these magnetic objects

    Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene

    Get PDF
    Studying the properties of complex molecules on surfaces is still mostly an unexplored research area because the deposition of the metal complexes has many pitfalls. Herein, we probed the possibility to produce surface hybrids by depositing a Co(II)-based complex with chalcone ligands on chemical vapor deposition (CVD)-grown graphene by a wet-chemistry approach and by thermal sublimation under high vacuum(.) Samples were characterized by high-frequency electron spin resonance (HF-ESR), XPS, Raman spectroscopy, atomic force microscopy (AFM), and optical microscopy, supported with density functional theory (DFT) and complete active space self-consistent field (CASSCF)/N-electron valence second-order perturbation theory (NEVPT2) calculations. This compound's rationale is its structure, with several aromatic rings for weak binding and possible favorable pi-pi stacking onto graphene. In contrast to expectations, we observed the formation of nanodroplets on graphene for a drop-cast sample and microcrystallites localized at grain boundaries and defects after thermal sublimation

    Pentacoordinate and Hexacoordinate Mn(III) Complexes of Tetradentate Schiff-Base Ligands Containing Tetracyanidoplatinate(II) Bridges and Revealing Uniaxial Magnetic Anisotropy

    No full text
    Crystal structures and magnetic properties of polymeric and trinuclear heterobimetallic MnIII···PtII···MnIII coordination compounds, prepared from the Ba[Pt(CN)4] and [Mn(L4A/B)(Cl)] (1a/b) precursor complexes, are reported. The polymeric complex [{Mn(L4A)}2{μ4-Pt(CN)4}]n (2a), where H2L4A = N,N’-ethylene-bis(salicylideneiminate), comprises the {Mn(L4A)} moieties covalently connected through the [Pt(CN)4]2− bridges, thus forming a square-grid polymeric structure with the hexacoordinate MnIII atoms. The trinuclear complex [{Mn(L4B)}2{μ-Pt(CN)4}] (2b), where H2L4B = N,N’-benzene-bis(4-aminodiethylene-salicylideneiminate), consists of two [{Mn(L4B)} moieties, involving pentacoordinate MnIII atoms, bridged through the tetracyanidoplatinate (II) bridges to which they are coordinated in a trans fashion. Both complexes possess uniaxial type of magnetic anisotropy, with D (the axial parameter of zero-field splitting) = −3.7(1) in 2a and −2.2(1) cm−1 in 2b. Furthermore, the parameters of magnetic anisotropy 2a and 2b were also thoroughly studied by theoretical complete active space self-consistent field (CASSCF) methods, which revealed that the former is much more sensitive to the ligand field strength of the axial ligands

    Synthesis, characterization, DNA interaction and cleavage, and in vitro cytotoxicity of copper(II) mixed-ligand complexes with 2-phenyl-3-hydroxy-4(1H)-quinolinone

    Get PDF
    A series of mixed-ligand complexes [Cu(qui)(L)]NO3·xH2O (1–6), where Hqui = 2-phenyl-3-hydroxy-4(1H)-quinolinone, L = 2,2′-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), bis(2-pyridyl)amine (ambpy) (3), 5-methyl-1,10-phenanthroline (mphen) (4), 5-nitro-1,10-phenanthroline (nphen) (5) and bathophenanthroline (bphen) (6), have been synthesized and fully characterized. The X-ray structures of [Cu(qui)(phen)]NO3·H2O (2) and [Cu(qui)(ambpy)]NO3 (3a) show a slightly distorted square-planar geometry in the vicinity of the central copper(II) atom. An in vitro cytotoxicity study of the complexes found significant activity against human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cell lines, with the best results for complex 6, where IC50 equals to 2.1 ± 0.2 μM, and 2.2 ± 0.4 μM, respectively. The strong interactions of the complexes with calf thymus DNA (CT-DNA) and high ability to cleave pUC19 DNA plasmid were found. A correlation has been found between the in vitro cytotoxicity and DNA cleavage studies of the complexes

    SOD-Mimic Cu(II) Dimeric Complexes Involving Kinetin and Its Derivative: Preparation and Characterization

    Get PDF
    Two SOD-mimic active dimeric Cu(II) chlorido complexes of the compositions [Cu2(μ-HL1)4Cl2]Cl2 (1) and [Cu2(μ-HL2)2(μ-Cl)2(HL2)2Cl2] · 4H2O (2) involving the cosmetologically relevant cytokinin kinetin (N6-furfuryladenine, HL1) and its derivative N6-(5-methylfurfuryl)adenine (HL2) have been synthesized and characterized by elemental analysis, infrared, and electronic spectroscopy, ESI+ mass spectrometry, conductivity and temperature dependence of magnetic susceptibility measurements, and thermogravimetric (TG) and differential thermal (DTA) analyses. The results of these methods, particularly the temperature dependence of magnetic susceptibility, showed the complexes to be dimeric with a strong antiferromagnetic exchange (J = −290 cm−1 for complex 1 and J = −160 cm−1 for 2). The complexes have been identified as auspicious SOD-mimics, as their antiradical activity evaluated by the in vitro SOD-mimic assay resulted in the IC50 values equal to 8.13 μM (1) and 0.71 μM (2)
    corecore