364 research outputs found

    Adult Human T Cell Leukemia

    Get PDF

    Nematodirus Battus : nématode parasite du tube digestif chez les ovins : étude bibliographique

    Get PDF
    Dans une première partie, la taxonomie de Nematodirus battus, sa biologie et sa morphologie sont abordées. La deuxième partie concerne l'épidémiologie originale du parasite dont le développement des stades larvaires se fait à l'intérieur de la coque de l'oeuf. La pathogénie, les symptômes et les lésions associés à la nématodirose sont décrits en troisième partie. Enfin, le diagnostic, le traitement et la prophylaxie de cette parasitose font l'objet de la quatrième partie

    Adult Human T Cell Leukemia

    Get PDF

    Three-Dimensional Microscopy Characterization of Death Receptor 5 Expression by Over-Activated Human Primary CD4+ T Cells and Apoptosis

    Get PDF
    Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4+ T cells in microvesicles

    Phage T5 straight tail fiber is a multifunctional protein acting as a tape measure and carrying fusogenic and muralytic activities

    Get PDF
    We report a bioinformatic and functional characterization of Pb2, a 121-kDa multimeric protein that forms phage T5 straight fiber and is implicated in DNA transfer into the host. Pb2 was predicted to consist of three domains. Region I (residues 1-1030) was mainly organized in coiled coil and shared features of tape measure proteins. Region II (residues 1030-1076) contained two alpha-helical transmembrane segments. Region III (residues 1135-1148) included a metallopeptidase motif. A truncated version of Pb2 (Pb2-Cterm, residues 964-1148) was expressed and purified. Pb2-Cterm shared common features with fusogenic membrane polypeptides. It formed oligomeric structures and inserted into liposomes triggering their fusion. Pb2-Cterm caused beta-galactosidase release from Escherichia coli cells and in vitro peptidoglycan hydrolysis. Based on these multifunctional properties, we propose that binding of phage T5 to its receptor triggers large conformational changes in Pb2. The coiled coil region would serve as a sensor for triggering the opening of the head-tail connector. The C-terminal region would gain access to the host envelope, permitting the local degradation of the peptidoglycan and the formation of the DNA pore by fusion of the two membranes

    Development of a high-throughput colorimetric Zika virus infection assay

    Get PDF
    Zika virus (ZIKV) is an emerging pathogen that causes congenital infections which may result in birth defects, such as microcephaly. Currently, no approved treatment or vaccination is available. ZIKV can be readily detected in cell culture where virally infected cells are normally stained by specific antibodies. As ZIKV regularly causes a cytopathic effect, we were wondering whether this viral property can be used to quantitatively determine viral infectivity. We here describe the use of an 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide-(MTT)-based cell viability assay that allows to determine ZIKV-induced cell death. We show that this colorimetric assay quantifies ZIKV infection over a broad range of viral dilutions in both monkey and human cells. It allows to determine inhibitory activities of antivirals that block ZIKV or to define the neutralizing antibody titers of ZIKV antisera. This MTT-based ZIKV detection assay can be evaluated by naked eye or computational tools, has a broad linear range, does not require large equipment or costly reagents, and thus represents a promising alternative to antibody-based assays, in particular in resource-poor settings. We propose to use this simple, fast, and cheap method for quantification of ZIKV neutralizing antibodies and testing of antiviral compounds.Peer reviewe

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al
    • …
    corecore