7 research outputs found

    Comparison of diagnostic techniques for detection of Giardia duodenalis in dogs and cats

    No full text
    Abstract Background An evaluation of currently available in‐clinic diagnostic tests for Giardia duodenalis infection of dogs and cats has not been performed. In addition, there is discordance among published diagnostic comparisons. The absence of a true gold standard for detecting Giardia duodenalis also complicates diagnostic evaluations. Objectives To evaluate diagnostic tests commercially available in the United States for detecting Giardia duodenalis in dogs and cats, in comparison to a widely used reference test, the direct immunofluorescent assay (IFA), and also to compare the results of 2 methods of analysis: comparison of diagnostic tests to a reference test (IFA) and Bayesian analysis. Animals Fecal samples from a convenience sample of 388 cats and dogs located in Colorado, Oklahoma, and Virginia. Methods Fecal samples were tested for Giardia duodenalis by zinc sulfate centrifugal fecal flotation and 4 different commercial diagnostic immunoassays. Results were analyzed via Bayesian analysis and by comparison to the IFA as the reference test. Results Sensitivity and specificity by comparison to IFA was ≄82% and ≄90%, respectively, for all diagnostic tests in dogs and cats. When analyzed via Bayesian analysis, sensitivity and specificity were ≄83% and ≄95%, respectively. When ZnSO4 centrifugal fecal flotation results were combined with immunoassay results, there was no longer a significant difference between the sensitivities of the commercial in‐clinic immunoassays. Conclusion and Clinical Relevance The Bayesian analysis validates using IFA as the reference test. Differences in commercial in‐clinic immunoassay sensitivities can be mitigated when the results are combined with ZnSO4 centrifugal fecal flotation results

    Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials.

    No full text
    BackgroundDNA plasmids promise a pragmatic alternative to viral vectors for prime-boost HIV-1 vaccines. We evaluated DNA plasmid versus canarypox virus (ALVAC) primes in 2 randomized, double-blind, placebo-controlled trials in southern Africa with harmonized trial designs. HIV Vaccine Trials Network (HVTN) 111 tested DNA plasmid prime by needle or needleless injection device (Biojector) and DNA plasmid plus gp120 protein plus MF59 adjuvant boost. HVTN 100 tested ALVAC prime and ALVAC plus gp120 protein plus MF59 adjuvant boost (same protein/adjuvant as HVTN 111) by needle.Methods and findingsThe primary endpoints for this analysis were binding antibody (bAb) responses to HIV antigens (gp120 from strains ZM96, 1086, and TV1; variable 1 and 2 [V1V2] regions of gp120 from strains TV1, 1086, and B.CaseA, as 1086 V1V2 and B.CaseA were correlates of risk in the RV144 efficacy trial), neutralizing antibody (nAb) responses to pseudoviruses TV1c8.2 and MW925.26, and cellular responses to vaccine-matched antigens (envelope [Env] from strains ZM96, 1086, and TV1; and Gag from strains LAI and ZM96) at month 6.5, two weeks after the fourth vaccination. Per-protocol cohorts included vaccine recipients from HVTN 100 (n = 186, 60% male, median age 23 years) enrolled between February 9, 2015, and May 26, 2015 and from HVTN 111 (n = 56, 48% male, median age 24 years) enrolled between June 21, 2016, and July 13, 2017. IgG bAb response rates were 100% to 3 Env gp120 antigens in both trials. Response rates to V1V2 were lower and similar in both trials except to vaccine-matched 1086 V1V2, with rates significantly higher for the DNA-primed regimen than the ALVAC-primed regimen: 96.6% versus 72.7% (difference = 23.9%, 95% CI 15.6%-32.2%, p 98% in both trials, with significantly higher 50% inhibitory dilution (ID50) among DNA-primed positive responders (n = 53) versus ALVAC-primed (n = 182) to tier 1A MW965.26 (GM 577.7 versus 265.7, ratio = 2.17, 95% CI 1.67-2.83, p ConclusionsIn this study, we found that further investigation of DNA/protein regimens is warranted given enhanced immunogenicity to the V1V2 correlates of decreased HIV-1 acquisition risk identified in RV144, the only HIV vaccine trial to date to show any efficacy

    Pharmacokinetic serum concentrations of VRC01 correlate with prevention of HIV-1 acquisitionResearch in context

    No full text
    Summary: Background: The phase 2b proof-of-concept Antibody Mediated Prevention (AMP) trials showed that VRC01, an anti-HIV-1 broadly neutralising antibody (bnAb), prevented acquisition of HIV-1 sensitive to VRC01. To inform future study design and dosing regimen selection of candidate bnAbs, we investigated the association of VRC01 serum concentration with HIV-1 acquisition using AMP trial data. Methods: The case–control sample included 107 VRC01 recipients who acquired HIV-1 and 82 VRC01 recipients who remained without HIV-1 during the study. We measured VRC01 serum concentrations with a qualified pharmacokinetic (PK) Binding Antibody Multiplex Assay. We employed nonlinear mixed effects PK modelling to estimate daily-grid VRC01 concentrations. Cox regression models were used to assess the association of VRC01 concentration at exposure and baseline body weight, with the hazard of HIV-1 acquisition and prevention efficacy as a function of VRC01 concentration. We also compared fixed dosing vs. body weight-based dosing via simulations. Findings: Estimated VRC01 concentrations in VRC01 recipients without HIV-1 were higher than those in VRC01 recipients who acquired HIV-1. Body weight was inversely associated with HIV-1 acquisition among both placebo and VRC01 recipients but did not modify the prevention efficacy of VRC01. VRC01 concentration was inversely correlated with HIV-1 acquisition, and positively correlated with prevention efficacy of VRC01. Simulation studies suggest that fixed dosing may be comparable to weight-based dosing in overall predicted prevention efficacy. Interpretation: These findings suggest that bnAb serum concentration may be a useful marker for dosing regimen selection, and operationally efficient fixed dosing regimens could be considered for future trials of HIV-1 bnAbs. Funding: Was provided by the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIAID) (UM1 AI068614, to the HIV Vaccine Trials Network [HVTN]; UM1 AI068635, to the HVTN Statistical Data and Management Center [SDMC], Fred Hutchinson Cancer Center [FHCC]; 2R37 054165 to the FHCC; UM1 AI068618, to HVTN Laboratory Center, FHCC; UM1 AI068619, to the HPTN Leadership and Operations Center; UM1 AI068613, to the HIV Prevention Trials Network [HPTN] Laboratory Center; UM1 AI068617, to the HPTN SDMC; and P30 AI027757, to the Center for AIDS Research, Duke University (AI P30 AI064518) and University of Washington (P30 AI027757) Centers for AIDS Research; R37AI054165 from NIAID to the FHCC; and OPP1032144 CA-VIMC Bill & Melinda Gates Foundation
    corecore