895 research outputs found
Flight Without Horizon References in European Starlings
No abstract is available for this item
Flight without Horizon References in European Starlings
No abstract is available for this item
Leg Thrust Important in Flight Take-Off in the Pigeon
Measurements of the force generated by the legs of rock doves Columba livia during vertical and near-vertical take-off showed that the birds were able to develop an upward directed force of from 1.3 to 2.3 times their body weight. This force resulted in an instantaneous acceleration of 15.63 ms−2 at maximum thrust. Motion pictures taken during the take-off showed that as the birds\u27 feet left the experimental perch, their wings were in the overhead clap position. We suggest that the vertical take-off in birds is accomplished in three stages; leg thrust, clap-and-fling and steady-state flight
McLeod myopathy revisited: more neurogenic and less benign
The X-linked McLeod neuroacanthocytosis syndrome (MLS) has originally been denoted as ‘benign' McLeod myopathy. We assessed the clinical findings and the muscle pathology in the eponymous index patient, Hugh McLeod, and in nine additional MLS patients. Only one patient had manifested with neuromuscular symptoms. During a mean follow-up of 15 years, however, eight patients including the initial index patient showed elevated skeletal muscle creatine kinase levels ranging from 300 to 3000 U/L, and had developed muscle weakness and atrophy. Two patients had disabling leg weakness. Muscle histology was abnormal in all 10 patients. Clear but unspecific myopathic changes were found in only four patients. All patients, however, had neurogenic changes of variable degree. Post-mortem motor and sensory nerve examinations support the view that muscle atrophy and weakness are predominantly due to an axonal motor neuropathy rather than to a primary myopathy. Multisystem manifestations developed in eight patients at a mean age of 39 years. Three patients manifested with psychiatric features comprising schizophrenia-like psychosis and personality disorder, two presented with generalized seizures and one with chorea. During follow-up, seven patients developed chorea, six had psychiatric disorders, five had cognitive decline and three had generalized seizures. Five patients died because of MLS-related complications including sudden cardiac death, chronic heart failure and pneumonia between 55 and 69 years. In conclusion, our findings confirm that MLS is not a benign condition but rather a progressive multisystem disorder sharing many features with Huntington's diseas
Toward an Ising Model of Cancer and Beyond
Theoretical and computational tools that can be used in the clinic to predict
neoplastic progression and propose individualized optimal treatment strategies
to control cancer growth is desired. To develop such a predictive model, one
must account for the complex mechanisms involved in tumor growth. Here we
review resarch work that we have done toward the development of an "Ising
model" of cancer. The review begins with a description of a minimalist
four-dimensional (three in space and one in time) cellular automaton (CA) model
of cancer in which healthy cells transition between states (proliferative,
hypoxic, and necrotic) according to simple local rules and their present
states, which can viewed as a stripped-down Ising model of cancer. This model
is applied to model the growth of glioblastoma multiforme, the most malignant
of brain cancers. This is followed by a discussion of the extension of the
model to study the effect on the tumor dynamics and geometry of a mutated
subpopulation. A discussion of how tumor growth is affected by chemotherapeutic
treatment is then described. How angiogenesis as well as the heterogeneous and
confined environment in which a tumor grows is incorporated in the CA model is
discussed. The characterization of the level of organization of the invasive
network around a solid tumor using spanning trees is subsequently described.
Then, we describe open problems and future promising avenues for future
research, including the need to develop better molecular-based models that
incorporate the true heterogeneous environment over wide range of length and
time scales (via imaging data), cell motility, oncogenes, tumor suppressor
genes and cell-cell communication. The need to bring to bear the powerful
machinery of the theory of heterogeneous media to better understand the
behavior of cancer in its microenvironment is presented.Comment: 55 pages, 21 figures and 3 tables. To appear in Physical Biology.
Added reference
Effects of anisotropic interactions on the structure of animal groups
This paper proposes an agent-based model which reproduces different
structures of animal groups. The shape and structure of the group is the effect
of simple interaction rules among individuals: each animal deploys itself
depending on the position of a limited number of close group mates. The
proposed model is shown to produce clustered formations, as well as lines and
V-like formations. The key factors which trigger the onset of different
patterns are argued to be the relative strength of attraction and repulsion
forces and, most important, the anisotropy in their application.Comment: 22 pages, 9 figures. Submitted. v1-v4: revised presentation; extended
simulations; included technical results. v5: added a few clarification
Disappearance of plasmaspheric hiss following interplanetary shock
Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss
- …