1,443 research outputs found

    Wide range linear fluxgate magnetometer Patent

    Get PDF
    Development of wide range linear fluxgate magnetomete

    Preprototype nitrogen supply subsystem development

    Get PDF
    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size

    “The Stranger and the Ancient Race”: Collective Responsibility in Educational Research

    Get PDF
    Taking up, and working towards implementation, of the Truth and Reconciliation Commission of Canada’s Calls to Action necessitates complex conversations and collective responsiveness to past, present, and future challenges; including, as is the topic of this paper, within educational research. This article is an appeal for collaborative research within an ethical space of engagement in order to meet the needs of Indigenous students and teachers within Canada’s education system

    Preprototype nitrogen supply subsystem development

    Get PDF
    A nitrogen supply subsystem based on the dissociation of hydrazine into a mixture of hydrogen and nitrogen is developed. The latter is separated to provide makeup nitrogen to control the composition of spacecraft atmospheres. Specific hardware developments resulted in the design and fabrication of a nominal 3.6 kg/d nitrogen generation module. The design integrates a hydrazine catalytic dissociator, three ammonia dissociation stages and four hydrogen separation stages into a 33 kg, 14 cu dm module. A technique was devised to alternate the ammonia dissociation and hydrogen separation stages to give high nitrogen purity in the end product stream. Tests show the product stream to contain less than 0.5 percent hydrogen and 10 parts per million ammonia. The design and development of a test stand for the nitrogen generation module and a series of tests which verified its operation and performance capability are described

    Performance characterization of a Bosch CO sub 2 reduction subsystem

    Get PDF
    The performance of Bosch hardware at the subsystem level (up to five-person capacity) in terms of five operating parameters was investigated. The five parameters were: (1) reactor temperature, (2) recycle loop mass flow rate, (3) recycle loop gas composition (percent hydrogen), (4) recycle loop dew point and (5) catalyst density. Experiments were designed and conducted in which the five operating parameters were varied and Bosch performance recorded. A total of 12 carbon collection cartridges provided over approximately 250 hours of operating time. Generally, one cartridge was used for each parameter that was varied. The Bosch hardware was found to perform reliably and reproducibly. No startup, reaction initiation or carbon containment problems were observed. Optimum performance points/ranges were identified for the five parameters investigated. The performance curves agreed with theoretical projections

    Prototype Bosch CO2 reduction subsystem for the RLSE experiment

    Get PDF
    Requirements for the Bosch carbon dioxide reduction subsystem were established in a study of regenerative life support evaluation experiments. A detailed design is presented including a schematic, components list and characteristics, requirements summaries, and complete definition of life systems' advanced control/monitor instrumentation applied to the Bosch subsystem. Design information needed to proceed with the final design and fabrication of a preprototype system is presented

    Advanced air revitalization system testing

    Get PDF
    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed

    Electrochemical carbon dioxide concentrator subsystem development

    Get PDF
    The fabrication of a one-person Electrochemical Depolarized Carbon Dioxide Concentrator subsystem incorporating advanced electrochemical, mechanical, and control and monitor instrumentation concepts is discussed. This subsystem included an advanced liquid cooled unitized core composite cell module and integrated electromechanical components. Over 1800 hours with the subsystem with removal efficiencies between 90%. and 100%; endurance tests with a Fluid Control Assembly which integrates 11 gas handling components of the subsystem; and endurance testing of a coolant control assembly which integrates a coolant pump, diverter valve and a liquid accumulator were completed

    Regenerative CO2 removal for PLSS application

    Get PDF
    Various concepts for the design of the nonelectrochemical absorber were defined and evaluated. A preliminary design based on the use of hollow fiber membranes was developed. Small scale bench testing demonstrated the carbon dioxide removal capability and provided design data for scale-up to the one person level. A full scale conceptual design of the absorbent regeneration hardware using six electrochemical cells was also completed. The design was supported by single cell testing and showed that a full scale regeneration system, operating continuously over 24 hours, can regenerate the absorbent from one extravehicular activity mission. The single cell regeneration hardware was operated for over 800 hours

    Technology advancement of the electrochemical CO2 concentrating process

    Get PDF
    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d)
    corecore