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FOREWORD

The development work described herein was conducted by Life Systems, Inc. at
Cleveland, Ohio under Contract NAS2-11129, during the period of December, 1981
through November, 1983. The Program Manager was Dr. Dennis B. Heppner. The
personnel contributing to the program and their responsibilities are outlined
below:

Personnel 	 Area of Responsibility

Mike J. Dahlhausen	 Control and Monitor Instrumentation Software and
Computer Hardware

Tim H. Hallick	 Program Testing, Data Reduction, Module/Cell
Configurations, Fabrication and Assembly

Dennis B. Heppner, Ph.D.	 Program Manager, System Design and Analysis

Don W. Johnson	 Control and Monitor Instrumentation Fabrication
and Electronic Device Design, Assembly and
Checkout

Ray Klimas	 Control and Monitor Instrumentation Hardware
Design

Eugene P. Koszenski	 Product Assurance, Electrode/Matrix Development

Joel B. Lantz, Ph.D. 	 TRRHS Concept Review, Trade Studies and Design

Brian N. Livaich	 Mechanical Component/System Assembly and
Checkout, Data Recording

Franz Schubert	 System Integration and Electrochemical Design

The contract's Technical Monitor is P. D. Quattrone, Chief, Advanced Life
Support Office, NASA Ames Research Center, Moffett Field, CA.
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SUMKARY

Regenerative carbon dioxide removal techniques are needed to sustain man in
space for extended periods of time. The most promising concept for a
regenerative carbon dioxide removal system is the Electrochemical Depolarized
Carbon Dioxide Concentrator. This device allows for the continuous, efficient
removal of carbon dioxide from the spacecraft cabin and delivery of the carbon
dioxide premixed with hydrogen to a carbon dioxide reduction subsystem for
subsequent oxygen recovery.

The objectives of this program for the Electrochemical Carbon Dioxide
Concentrator subsystem were to (1) achieve high level of performance of a
one-person electrochemical carbon dioxide concentrator subsystem with the
ability to operate over wide ranges in relative humidity and H,, back
pressure, (2) demonstrate reliability by endurance testing the`major
components of an electrochemical concentrator subsystem, (3) demonstrate
achievement of reproducible electrochemical cell and module performance and
subsystem simplification concepts through extensive testing and (4) continue
to improve and develop needed ancillary components. These objectives were
successfully met. The program included (1) the fabrication, assembly and
testing of an advanced one-person carbon dioxide removal subsystem based on a
new electrochemical cell and module concept and unitized core composite
cells, (2) endurance testing of the three major components of an electro-
chemical concentrator, i.e., a six-cell module with unitized composite cores,
a Coolant Control Assembly and a Fluids Control Assembly, (3) test support
accessories required for subsystem testing, and (4) a preliminary design for a
triple redundant relative humidity sensor with in situ calibration. A
detailed mockup of an electrochemical concentrator subsystem as would be
applicable for the Space Station was also developed.

A one-person electrochemical concentrator subsystem was fabricated, assembled
and tested. The electrochemical module consists of six cells of a new
::onstruction. The new construction permitted the fabricatior of any size
midules without having to alter process air inlet and outlet duct work. All
ancillary components fit onto an end plate which is easily adaptable to any
size subsystem. A newly developed microcomputer based instrumentation, which
is roughly 75% smaller in weight, volume and power than the previous series of
instrumentation, was fabricated and used to control the one-person subsystem.
The one-person system consistently demonstrated high level, repeated performance
over 1,800 hours of operation and relative humidity variations between 30 an.,
85%. Average carbon dioxide removal efficiency was typically between 90 and
1002 (versus the 85% design point) at a nominal carbon dioxide partial pressure
of 400 Ps (3.0 mm of Hg). The cell voltages averaged 0.42 V. The module
nominally sustained 35 kPa (5 psig) H 2-to-air differential pressures.

Endurance testing of three electrochemical carbon dioxide removal. subsystem
components was continued under the program. Over 11,000 h of additional
operation was achieved on the six-cell module having the unitized composite
core construction. Average carbon dioxide removal efficiency was typically
greater than 70% at nominal carbon dioxide partial pressures of 400 Pa 0 mm
of H6;. Cell voltages averaged 0.35 V.
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A Fluids Control Assembly with its test stand performed for a total of
9,500 additional hours, which included over 10,000 test cycles. No failure of
the Fluids Control Assembly was observed. The Coolant Control Assembly
performed at or above its design point levels for over 9,400 additional hours
(18,800 typical test cycles) Satisfactory mechanical performance was achieved
on both of these devices.

A concept for a triple redundant relative humidity sensor based on directly
sensing the moisture content of air was designed. The design incorporates in
situ calibration with a repeatable gas pressure calibration source.

PROGRAM ACCOMPLISHMENTS

The key program accomplishments were as follows:

•	 Completed the fabrication of pi one-person Electrochemical Depolarized
carbon dioyide (CO ) Concentrator (EDC) subsystem incorporating
advanced electrochemical, mechanical and control and monitor instru-
mentation (C/M I) concepts. This subsystem, called the CS-1,
included the design of an advanced, liquid-cooled unitized core/
composite cell EDC module (EDCM) that features superior performance
stability, inlet air relative humidity (RH) range tolerance. pressure
capability and thermal characteristics and lower unit weight and
volume relative to prior modules.

•	 Completed over 1.800 h of testing of the CS-1 with CO 2 removal
efficiencies between 90 and 100%

•	 Designed and fabricated two new molds for injection molding
polysulfone cell frame parts. The cell frames together with a new
unitized core assembly permitted the assembly of six cell frames for
the CS-1.

•	 Completed endurance testing of a prototype Fluids Control Assembly
(FCA) which integrates 11 gas handling components required by the
CS-1 into a single unit.

• Completed endurance testing of r prototype Coolant Control Assembly
(CCA), which integrates a coolant pump, diverter valve and a liquid
accumulator into a single unit.

•	 Modified a test stand which provided all the fluid, electrical and
shutdown requirements for long-term, unattended testing of the CS-1.

• Developed a four-person EDC mockup. This mockup is useful to
demonstrate the size of the CO

2
 removal subsystem as would be

developed for a Space Station.

• Completed a preliminary design of a triple redundant RH sensor
(TRRHS), which will have in situ calibration and which will be
miniature relative to the present RH or dew point sensor.
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INTRODUCTION

Regenerative processes for revitalization of spacecraft atmospheres are essential
for making long-term manned space missions a reality. An important air revital-
ization step is the collection and concentration of metabolically produced CO2
for subsequent oxygen (0 ) recovery. This report discusses development of an
electrochemically-based lubsystem which performs that function.

Background

The EDC technique is the most promising technique for concentrating low level
CO from the air without incurring large weight and volume penalties. The EDC
removes CO continuously from low CO partial pressure in a flowing air
stream. Re CO exhaust, premixed with H 2 , can be sent to a CO  reduction
subsystem for recovery of the 0 2 from the CO2 or vented, as required. The EDC
also generates electrical power which can be used in other life support
processes (e.g., 0 2 generation by water electrolysis) if that is desired.

The CO2 removal process takes place in a module consisting of a series of
electrochemical cells. Each cell corsists of two electrodes separated by a
matrix containing an aqueous carbonate electrolyte solution. Plates adjacent
to the electrodes provide passageway4 for distribution of gases and electrical
current. Figure 1 shows the functional schematic of the EDC cell. Figure 2
details the specific electrochemical and chemical reactions which occur at the
electrodes. As shown in Figure 7, the overall reaction is

02 + 2 CO2 + 2 H2 a 2 CO2 + 2 H2O + electrical energy + heat	 (1)

A theoretical maximum of two moles of CO2 can be transferred for one mole of
0 consumed. The observed ratio of CO2 transferred to 0 2 consumed represents
tie process removal efficiency. A defined efficiency of 100% occurs when 2.75
kg (6.05 lb) of CO 2 is removed for each kg (2.2 lb) of 0 2 consumed.

The EDC concept utilizing alkaline metal carbonate electrolytes has evolved at
Life Systems, Inc. (LSI) under the National Aeronautics and Space Administration
(NASA) spontTEOP through Contracts NAS2-6118, NAS2-6478, NAS2-8666 and
NAS2-10204.	 The concept has progressed from operation of single EDC
cells to fabrication and testing of one-, three-, four- and six-person self-
contained subsystems. These previous research and development activities
resulted in demonstrated performance improvements in the electrodes, the
electrolyte and the electrolyte retaining matrix. These programs also include
development of unique peripheral components and advancement of technology
relating to EDC subsystem integration with other spacecraft air revitalization
svl-yetems.

(1-12) References cited at the end of this report.
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Program Objectives

The objectives of this program were to:

1. Using newly designed hardware, including cell frames and composite
cores, fabricate and test a one-person liquid cooled EDC subsystem
(the CS-0.

2. Demonstrate achievement of reproducible electrochemical module
performance and subsystem simplification concepts through extensive
testing.

3. Simplify and increase EDC subsystem reliability by design of a
TRRHS.

4. Achieve reproducible and predictable high level EDC performance over
ranges of relative humidity, H 2 backpressure and inlet CO2 partial
pressure for the CS-1 subsystem wider than previously demonstrated.

5. Continue to improve EDC subsystem performance.

The objectives of the program were met.

Report Organization

This Final Report covers the work performed during the period December, 1981
through November, 1983. The following major sections of this report present
the technical results grouped according to:

•	 Advanced EDC cell and module
0	 One-person CO2 removal subsystem
•	 Test support accessories
•	 Testing
•	 Supporting activities

These sections ore followed by conclusions and recommendations based upon the
work performed and by the references cited in the text.

ADVANCED EDC CELL AND MODULE

The hear' of the F.DC CO Removal Subs ystem is the EDCM and considerable
attention was giver to improving the dividual cells and the overall module.
The objectives of the composite cell th unitized core development were to
achieve reproducible and predictable high level EDC performance over extended
ranges of differential cell pressure and process air RH. The unitized core
concept enables such improvements by providing permanently bonded, versus
mechanically sealed, cell construction. This technology prevents gas leakage
across the edges of a cell matrix and therefore permits operation at higher
H -to-air differential pressures. It also provides uniformed matrix support
and thickness both up to and including the edges, resulting in uniform
electrolyte distributi-n and a superior RH tolerance range. The following
subsections describe ,4e core design and fabrication, the cell fabrication and
the advanced EDC module.

A^
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Uritized Core Fabrication

Since a major driver for composite EDC cell construction was to enhance
pressure differential and broaden RH capabilities, primary emphasis was
directed toward selection of compatible materials and the fabrication technique
for the unitized core, the heart of the cell. Following material selection,
preliminary methodology and equipment were defined for fabricating the building

blocks of the unitized core (matrix, gas cavity spacers and electrodes) and
assembly of the core. Initial fabrication procedures were then written, and
fixtures were fabricated to allow building of a breadboard 7.3 x 7.3 cm0 x. 3 in) cell. This activity was performed on a prior program and showed
that the fabrim fon procedures could be used to successfully develop a
unitized core.	 Under the present program these procedures and fixtures
were upgraded to permit the fabrication of a unitized cote for the new CS-1
cell design, which has an active area of 465 cm ` (0.5 ft ). Six of these
unitized core assemblies were fabricated for the CS-1 and none failed
throughout the testing of this subsystem.

The unitized core combines the following five major elements of the
electrochemical cell: (1) Process air gas cavity spacer, (2) the airside
electrode (cathode), (3) the cell matrix, (4) the hydrogen side electrode
(anode) and (5) the H2 gas cavity spacer. Fabrication of the unitized core
involves, first, the application of epoxy rims around the perimeters of the
process gbs cavity spacers and the cell matrix. This creates three
subassemblies. These subassemblies are then combined with the electrodes,
using more epoxy, to form the unitized core. This approach provides a uniform
support of the cell matrix over its entire area, thereby avoiding edge
distortion, maximizing gas pressure sealing characteristics of the
electrochemical cell and promoting uniform response of the electrolyte to
humidity changes.

The key structural material selected for the unitized core fabrication is an
epoxy resin. It forms the frames around the matrix and the expanded metal gas
cavity spacers and provides final sealing of the various building blocks to
form the unitized core. This material is compatible with the environment,
exhibits sufficient strength and has the needed flexibility. Critical
requirements of the fabrication process include maintainirg proper epoxy
thickness and uniformity and excluding air bubbles and pockets in the cured
epoxy rim. These parameters are controlled using combinations of heat,
pressure and vacuum applications. Care must be taken to ensure that all
components of the core are properly aligned with respect to the gas inlet and
outlet areas, that the cell matrix and electrode active areas are free from
epoxy, and that an effective epoxy seal is achieved around the edge of the
unitized core.

Composite Cell Fabrication

The overall concept for the composite EDC cell design and fabrication consists
of the unitized core as discussed above, injection-molded polysulfone plastic
frames for manifolding and distributing the process gases and internal

ID
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coolant, and current collectors for delivering current to the cell. The
composite cell polysulfone cell frame is fabricated as two sections - an air
frame and an H frame. These are so named because of the process fluids, air
and H, that t9ey come in contact with. A coolant cavity cover is epoxied to
the air frame and then the cathode current collector is laser-welded to the
current tabs. The H frame, with the anode current collector laser-welded to
its current tab, is hen epoxied together with the air frame. This
fabrication process provides an isolated internal liquid coolant cavity for
the EDC cells.

Process fluid isolation is accomplished by an arrangement of 0-rings that
provide seals between each composite cell in the module stack. A molded
O-ring was designed and fabricated to provide intercell sealing around the
entire periphery of the cell frame. This provided sealing of process air from
Internal to external of the module.

Figure 3 shows the unitized core and composite cell elements. Under this
program, five molds were designed, fabricated and used to make cell parts.
Two large molds were used to make the two polysulfone cell frame parts. The
H frame, in particular, was the most difficult to iniection mold because of
its large size and thickness. Several trial and error molding injection
attempts were made until the parts came out satisfactorily. Nonetheless, the
molds were very precise: the parts (air and H 2 frames) from the two separate
molds fit together almost perfectly. Three smaller molds were developed for a
large sealing 0-ring and two types of silver tabs (one for each type of frame)
used to transfer the current to the silver foil current collectors. All other
cell parts were machined or purchased as commercially available parts.

Advanced EDC Module

The advanced EDCM is designed as a liquid-cooled module, composed of six
unitized core composite cells for superior performance and differential
pressure capability. Each composite cell consists of the electrochemical
elements described above. The selected number of cells, six, was based on the
one-person 2CO removal rate of 1.0 kg/d (2.2 lb/d) and a current density of
21.3 mA/cm (19.8 ASF). The module has additional CO. removal capacity if
operated at higher current density.

The. advanced composite cell frames incorporated into the CS-1 feature integral
process air manifolds. These are apparent in the module drawing, Figure 4.
This design simplifies interfacing with the process air; only one set of inlet
and outlet ducts are required to interface the process air no matter how many
cells are in the module. It also enhances module storage life by permitting
capping of the manifolds to avoid dryout (versus sealing the module in plastic
bag). Most importantly, it allows vacuum charging of the total module (versus
one cell at a time) with electrolvte. This ensures uniform charging of all
cells, allows isolation of the cells from the atmosphere after they are charged
(since they are already assembled into a module) and saves considerable time.

The advanced, composite cell frame design provided vastly improved (from prior
cell designs), permanently sealed coolant cavities. The! several advantages of
this design were proven during testing:

8
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e	 First, the coolant cavity design significantly improved thermal
conduction from the cathode, where most of the heat is produced,
because the thickness of plastic between it and the coolant was
minimized. Heat removal and cell temperature regulation was
therefore improved. Conversely, the new design reduced thermal
conduction from the anode, where water is produced, since there now
exists an increased thickness of insulating plastic and a foil
current collector. This provides desirably higher anode
temperatures. The effect was to provide improved cooling and
temperature regulation at the primary point of heat production and
promote water removal at the point of water generation.

Second, when cell operation ceases, the anode temperature drops to
the coolant temperature at the same time water production stops, and
cell dryout is avoided. Conversely, the coolant temperature is not
so low as to permit condensation. This was again borne out in the
testing; approximately 15 applications of current (startup) occurred
with no problems. This approach also should avoid damage to cells
that electrically are isolated by any in situ cell. maintenance
techniques that jumper out inactive cells.

e	 The bonded cavity seal proved to be more reliable than the prior
mechanical (0-ring) seals. Throughout the testing there were no
leaks from the internal H cavity to the external atmosphere or
across the matrix from thl H22 to the air side. The module held

pressure at 34 . 5 kPa (5 psigl from the beginning of the testing to
the end.

e	 The coolant is intrinsically electrically isolated from the cell,
eliminating the need to electrically isolate coolant components.
Indeed, in the CS-1 design the coolant is distilled water. There
was no need to use specialized nonconducting `rlaiis as in the past.
There were no electrical grounding problems associated with the
CS-1.

The CS-1 EDCM component weight summary is shown in Table 1. It should be
noted that the top and bottom end plates used in the CS-1 were made from
stainless steel and naturally were heavy. Stainless steel was selected for
severe: reasons. First, the material was inexpensive and machining costs were
fairly minimal. Secondly, the top end plate and, to a certain extent the
bottom, contain fluid pathways and structural strength was required to ensure
no breakthrough of these pathways. For instance, the top end plate has nine
separate channels drilled into it. With stainless steel, these channels could
be drilled and then plugged and welded on the outside. With other materials
the sealing would be more difficult. Another reason was the unavailability of
the desired alternate material (glass-filled polysulfone) in the size required
to make the end plates. Even though the stainless steel was a convenient and
at this point, necessary material it is recognized that the top and the bottom
end plates presently comprise almost 80% of the total CS-1 EDCM weight.
Probably a 60 to 70% reduction in this area can be achieved with alternate
materials. However, these have to be evaluated in terms of structural strength
and their ability to support the various internal passages without other
impacts ( such as significantly increased thickness).

11
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TABLE 1 CS-1 EDCH WEIGHT SUMMARY

Unit Weight, Total Weight
Part Oty kg (lb) kg (Ib)

Top End Plate Assembly 1 16.40 (36.00) 16.40 (36.00)

Bottom End Plate Assembly 1 20.10 (44.20) 21.10 (44.20)

Top Insulation Plate 1 0.91 (2.00) 0.91 (2.00)

Bottom Insulation Plate 1 1.00 (2.20) 1.00 (2.20)
H 2 Frame 7 0.30 (0.67) 2.13 (4.69)

Air Frame 7 0.08 (0.17) 0.54(l.19)

Unitized Core 6 0.33 (0.73) 1.99 (4.38)

Coolant Cavity Cover 7 0.09 (0.20) 0.64(l.40)

Molded 0-ring 9 0.01 (0.03) 0.12 (0.27)

H 2 Frame Current Collector 6 0.05 (0.12) 0.33 (0.72)
Air Frame Current Collector 6 0.06 (0.13) 0.35 (0.78)

FCA Adapter Plate 1 0,60(l.32) 0.60(l.32)

CCA Adapter Plate 1 0.71(l.57) 0.71(l.57)

Bolts, Washers, Nuts, Epoxy Misc. 0-55(1.20) 0-55(1.20)

Total 46.33 (101.92)(x)

a. A flight unit, with lightweight end plates, would weigh 20.8 kg (45.8 lb)

a
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ONE-PERSON CO2 REMOVAL SUBSYSTEM

The major achievement under this program was the fabrication, assembly and
successful testing of a one-person CO removal subsystem, the CS 	 This
section describes the design and fabrication of the CS-1. Testing is covered
in a subsequent section. This section includes a general description including
specifications and a schematic, a description of the Mechanical/Electrochemical
Assembly (M/E A) and a description of the C/M I.

General Description

The overall CO,, removal process and control scheme is shown in Figure S. The
WE A includes `s six-cell EDCM and all components required to sense and
control gaseous and liquid fluid flows to and from this module. The C/M I
controls overall subsystem operation through the sensors and actuators located
on the M/E A. The C/M I also monitors end interprets subsystem operational
parameters and through the use of a communication link can display values on a
separate video monitor. It can also, through the communication link, provide
for appropriate changes in operational modes in response to operator inputs or
subsystem malfunctions.

Application

Two applications were considered for the CS-1. They include use in the
Shuttle Orbiter as a replacement of the existing lithium hydroxide (LiOH)
CO2 removal function. The second application is part of a central air
revitalization system as would be found in the Space Station. Because of
increased interest in the Space Station recently, the CS-1 was tested
extensively in the central application range.

Specifications

General design specifications are listed in Table 2. The RH/temperature range
projected for the Space Station application is shown in Figure 6. Overall
fluid, electrical and thermal inputs and outputs for the CS-1 are further
illustrated in Figure 7.

Mechanical/Electrochemical Assembly

The WE A is illustrated schematically in Figure S. The four primary
components are:

•	 The EDCM, which is the CO2 concentration element

ti	 An FCA, which regulates EDCM back pressure and N 2 and H2 flows

e	 The CCA, which in conjunction with the liquid/liquid heat exchanger
permits temperature regulation of the EDCM

e	 A current controller (liquid-cooled), which regulates the current to
the EDCM
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TABLE 2 CS-1 DESIGN SPECIFICATIONS

Application
Central Shuttle

1 1
1.0 (2.2) 1.0 (2.2)

400 (3.0) 667 (5.0)
667(5-0) 1.013 (7.6)
22.1 (3.2) 22.1 (3.2)
286 to 297 291 to 302
(60 to 75) (65 to 84)
277 to 286 277 to 289
(40 to 60) (39 to 61)
101 (14.7) 101 (14.7)
See Figure 6 20-80

280(45) 275 to 295 (35 to 71)
432 (950) 432 (950)

0.007 (0.014) 0.0024 (0.0053)
2.9 Stoichiometric 1.2 Stoichiometric
(at 9.9A) (at 9.OA)
173(25) 173(25)
0to75 0to5

N 2 N2
173(25) 173(25)

115, 400 Hz, 10 115, 400 Hz, 10
28 28

Crew Size
CO2 Removal Rate, kg/d (lb/d)
Cabin PCO2, Pa (mm Hg)

Daily Average
Maximum

Cabin p02, kPa (psia)
Cabin Temperature, K (F)

Cabin Dew Point, K (F)

Cabin Pressure, kPa (psia)
Process Air Humidity Range,

• Liquid Coolant
Temperature (max), K (F)
Flow Rate, kg/h (lb/h)

H 2 Supply
Flow Rate, kg/h (lb/h)

Pressure, Pa (psia)
Relative Humidity, %

Purge Gas
Type
Pressure, kPa (psia)

Electrical Power
VAC
VDC

Gravity
Noise Criteria, db

0to1	 Oto1
55	 55

9
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In addition to the primary components, two of which integrata several discrete
device functions, the subsystem includes: (a) two filter/isolation valves
(inlet and outlet), (b) two dry bulb temperature sensors (c) two dew point
temperature sensors, which when combined with the dry bulb temperature sensors,
are used to measure inlet and outlet RH and (d) a liquid/liquid heat exchanger.

The principal WE A components besides the EDCM, which was discussed
previously, are described further below.

Fluids Control Assembly

The CS-1 EDCM, like its precursors. will require monitoring and control of IHP2

flow. H back pressure and N ^ purge gas flow. These functions previously
performid by 11 discrete components, have now been integrated into a single,
lightweight, low volume FCC ►. This assembly, pictured in Figure 9. was
developed under a prior program and has been endurance tested for almost
20.000 hours. The CS-1 is the first application for the FCA in a subsystem.

Coolant Control Assembly

Three elements are essential for temperature control of the liquid-cooled
EDCM: a circulation pump, a diverter valve to regulate the proportions of
module coolant flowing through and around .s liquid/liquid heat exchanger
(connected to a central coolant source) and a liquid/gas accumulator to
accommodate module coolant expansion/contraction. These discrete components,
which require individual mounting and interconnecting plumbing, have been
replaced by an integrated CCA. This item, pictured in Figure 10. alr+o was
developed under a prior program and has been extensively endurance tested and
this program represents the first time it has been used in a CO 2 removal

subsystem.

Current Controller

The current controller, Figure 11, provides a regulated current sink for the
power generatee by the EDCM. For the CS-1 it is packaged as a separate
device. It is designed to be liquid cooled and lowod with the CS-1 WE A.
The central coolant source that interfaces with the CCc also removes the waste
heat from the current controller. Placement of the current controller near
the EDCM reduces the length of the electrical leads between the module and the
current controller and thereby minimises voltage drops.

The CS-1 current controller was fabricated, checked out and installed in tha
subsystem. This unit is an improvement over prior EDC current controllers,
not only in size reduction but also in the method M:.a efficiency of controlling
current and dissipating the EDCM-produced power. It uses power field effect
transistors mounted on a thermal surface (see Figure 12) and instrumentation
amplifiers for control and sensing. &is thermal surface or base of the current
controller is in direct contact (ph•sical and thermal) with a liquid-cooled
heat sink in normal operation as shown in Figure 13. The current controller
was packaged separately from the heat sink to allow removal and maintenance of
the controller without breaking into the spacecraft coolant line. Character-
istics and operating conditions of the current controller and heat sink are

19
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given in Table 3. This current controller can accommodate multi-person EDCMs.
The maximum power dissipation capability of the current controller is 200 W.
During CS-1 testing the nominal power dissipated was 25 W.

TABLE 3 CS-1 CURRENT CONTROLLER/HEAT SINK CHARACTERISTICS SUMMARY

Current Range, A	 0-25
Supply Voltages, VDC 	 * 15, 28
Power Required, W	 3
Max. Power Dissipation, W 	 200
Coolant Flow, dm3/min (gal/min)	 0-15(0-4)
Temperature, K (F)	 280-289(45-60)

Current Controller Heat Sink

Weight, kg (lb)	 1.0 (2.2) 0.82 (1.?"
Volume, dm 3 (in3 )	 0.62 (38) 0.26 (16)
Dimensions, cm (in) 	 9.9 x 9.4 x 6.6 15 x 9.9 x 1.8

(3.4 x 3.7 x 2.6)	 (5.9 x 3.9 x 0.7)

M/E A Packaging

The assembled CS-1 M/E A is shown in Figure 14. The major subassemblies, as
indicated, are the FCA, the CCA, the EDCM and inlet and outlet process air
ducts. Each of the latter includes an isolation/filter valve, a dew point
temperature sensor and a dry bulb temperature sensor. The dew point sensor is
a commercial chilled mirror type sensor in which the electronics were
incorporated in the C/M I. The temperature sensors are resistive thermal
device (RTD) types. In addition, the inlet duct contains an air/liquid heat
exchanger (not shown) which preconditions the process air prior to entering
the EDCM.

Figure 15 chows EDC CO 2 removal subsystems at various person capacities to
illustrate the flexibility of achieving multi-person systems with the basic
CS-1 design. It is noted that only the height dimension changes. Detailed

characteristics of one to 12 person sizes are given in Table 4. It should be

noted that the listed weights assume a light-weight end plate construction.

Table 5 summarizes the CS-1 M/E A weight, power and heat rejection
requirements.

Control and Monitor Instrumentation

The function of the CS-1 C/M I is to provide for automatic mode and mode

transition control, automatic shutdown for self-protection, monitoring of
subsystem parameters and interfacing with ground Test Support Accessories
(TSA) and data acquisition facilities. Under this program a new series of
instrumentation based on microcomputer technology was developed. The CS-1
C/M I, termed the Model 220, represents a major size reduction from the prior
series of instrumentation. The weight, volume and power consumption were
reduced by over 75%.

4

5



ORIGINAL
OF POOR QIIALI'r,.

FCA
	 mix Ueu tuum

FIGURL 14 CS-1 MECHANICAL/ELECTROCHEMICAI ASSEMBLY

26

- )p



00

W
F
r
:!7x
J
f

O

x
N

O
U
;J
O
Lc]

Z
O
x

c"7	 W
O.

H

E

Ln

W

N	 `^fs.

r

f>.

n

OF POOR QU 4LIT!

27

^.a
C
O
rn

CL



N
 

C
D

 

_.&
 ... ,."""",

. 

T
A

B
LE

 
4 

C
H

A
R

A
C

T
E

R
IS

T
IC

S
 

O
F 

ED
C

 
C

O
2 

R
E

M
O

V
A

L 
S

U
B

S
Y

S
TE

M
S

 

M
od

el
 

N
o.

 o
f 

C
ap

ac
ity

, P
e

o
p

le
 @

 
W

ei
gh

t,
 

V
ol

um
e,

 
D

im
e

n
si

o
n

s,
 e

m
 (

in
) 

N
o.

 
e

e
lls

·a
l 

3 
m

m
 H

--'
I 

1
2

m
m

 H
g

 
kg

 (I
b)

 
d

m
3 

(f
P

) 
H

t 
W

d
 

Ln
 

C
S

·l
 

6 
1 

2 
23

 (5
0)

 
45

 (1
.6

) 
34

.0
(1

3.
4)

 
39

.4
 (

15
.5

) 
34

.3
(1

3.
5)

 

C
S

-2
 

12
 

2 
4 

2
8

(6
2

) 
54

 (
1.

9)
 

40
.1

 (
15

.8
) 

39
.4

 (
15

.5
) 

34
.3

 (1
3.

5)
 

C
S

-3
 

18
 

3 
6 

3
4

(7
4

) 
6

2
 (2

.2
) 

46
.2

 (
18

.2
) 

39
.4

 (1
5.

5)
 

34
.3

 (1
3.

5)
 

C
S

-4
 

24
 

4 
8 

3
9

(8
6

) 
71

 (
2.

5)
 

52
.3

(2
0.

6)
 

39
.4

 (
15

.5
) 

34
.3

 (1
3.

5)
 

C
S

-6
 

36
 

6 
12

 
50

 (1
10

) 
8

8
(3

.1
) 

65
.4

 (
25

.4
) 

39
.4

(1
5.

5)
 

34
.3

 (1
3.

5)
 

C
S

-8
 

48
 

8 
16

 
61

 (
13

4)
 

10
5(

3.
7)

 
76

.7
 (

30
.2

) 
39

.4
(1

5.
5)

 
34

.3
(1

3.
5)

 

-
-
-
-

-

a.
 B

as
ed

 o
n 

2.
20

 I
b

 C
0

2/
pe

rs
on

·d
ay

. 

P
o

w
e

r.
W

 
O

C
O

ut
 

A
C

ln
 

10
 

5
0

 

40
 

5
0

 

70
 

50
 

10
0 

50
 

16
0 

80
 

22
0 

80
 

H
e

a
t 

L
o

a
d

.W
 

11
4 

15
8 

20
1 

24
5 

36
4 

45
0 

~
~
 

~e
 
~
 ... 

O
"G

 
c
:>

 
,
.
Q

 

.... 
'" 

~i
iI

 

~
 



ORIGINAL PAGE 18
OF POOP QUALITY

TABLE 5 CS-1 MECHANICAL COMPONENT WEIGHT,

POWER AND HEAT REJECTION SUMMARY

Total Total Neat
AC Power, DC Power, Rejection,

W W W
- -27 41

- 2(0) 2

75 -- 75

- 1 1

- 1 1

- 3 30(d)
75 -27 150

Unit Total
Item No. Weight!') Weight,
No. Component Req'd kg (Ib) k9 (lb)

1 EDCMibI 1 46.3 (101.9) 46.3 (101.9)

2 Assembly, Fluids Control 1 1.7(	 3.8) 1.7(	 3.8)

3 Assembly, Coolant Control 1 2.7(	 6.0) 2.7(	 6.0)

4 Heat Exchanger, Liq!Liq 1 0.8(	 1.8) 0.8(	 1.8)

5 Filter! Isolation Valve 2 0.7(	 1.5) 1.4(	 3.0)

6 Sensor, Dew Point 2 0.2(	 0.5) 0.4(	 1.0)

7 Sensor, Temperature 2 0.1(	 0.2) 0.2(	 0.4)

8 interface, Inlet Air (w!Heat) 1 2.2(	 4.8) 2.2(	 4.8)

9 Interface, Outlet Air 1 1.2(	 2.7) 1.2(	 2.7)

10 Assembly, Current Controller 1 1.8(	 4.0) 1.8(	 4.0)
- 58.5 (129.4)

(a) Dry weight.
(b) Does not have honeycomb end plates.
(c) Steady-state operation sensors.
(d) The 27 W of EDCM power is converted to heat.
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Four operating modes are available for the subsystem. as shown in Figure 16
with separate Normal modes corresponding to the operating conditions of either
Shuttle or Central (i.e., Space Station) application. Each mode is defined in
Table 6.

General Description

The CS-1 /M I receives and transmits signals from and to the M/E A sensors
and actuators. Through these it controls and monitors subsystem pressures,
flow rates, temperatures, cell voltages, current and valve positions in each
operating mode. It implements each mode, whether initiated automatically or
manually and provides fail-safe operational changes to protect the CS-1 if
malfunctions occur.

Internally, process operating mode control is a relatively complex operation.
It includes selection of different unit processes, selection of valve
positions, sequencing of valve positions, sequencing of actuators and checking
parametric conditions as a transition (e.g., Shutdown to Normal Central)
proceeds. However, this procedure for control is fully automated by the C/M I
so that the operator only needs to press the Mode Enable and the desired mode
buttons to initiate transition sequences.

Hardware Description

The 220 C/M I is shown in a series of photographs, Figures 17-20. These
illustrate, respectively, the front view, rear view, the total assembly
without its protective dust cover and an exploded view indicating the major
assemblies. There are five major assemblies in the 220 C/M I:

1. Computer car:! cage containing the microprocessor's central
processing unit (CPU) along with support cards (memory,
analog/digital conversion (A/D), digital input and output, etc.).

2. Power supply module for supplying ±15 V and +5 V from the input
power of +28 V.

3. Signal conditioning card cage and 11 signal conditioning cards for
conditioning the sensor outputs and providing actuator drive
signals.

4. Power assembly for supplying those sensors and actuators which
require drive current for their operation (dew point, flow, and
motor actuation)

5. Front panel assembly with status indication and mode transition
selection buttons.

Design characteristics of the :40del 220 C/M I are given in Table 7. The C/M I
uses Erasable Programmable Read-Gly Memory (EPROM) for its program storage.
It also uses some Random Access Memory (RAM) for data storage. This permits
the access of the real-time data by an external monitor through a standard
communications link.
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5 Modes
• 4 Operating Modes
• 13 Mode Transitions
• 9 Programmable, Allowed

Mode Transitions

FIGURE 16 CS-1 MODS AND ALLOWABLE MODE TRANSITIONS

PER
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TABLE 6 CS-1 NODE DEFINITIONS

Mode (Code) _
Shutdown (B)	 The EDCM is not removing CO2 . Module current is zero, the CCApump isoff and all valves are closed.

The system is powered and all sensors are working. The Shutdown Mode is called for by:
• Manual actuation
• Low EDCM individual cell voltage
• Low H 2 pressure
• High H2 pressure
• Lo.r outlet process air RH
• High outlet process air RH
• Second failure of triple redundant sensors for pressure, relative humidity, temperature and

combustible gas concentration (capability only)
• Power on reset (POR) from Unpowered Mode D
• Mode transition from Shutdown Mode (B) to Normal Shuttle (A), Normal Central (F), or Purge (C)

was not successful. All transitions to the Shutdown Mode except POR and Purge include a
timed purge sequence as part of the mode transition sequence.

Normal Shuttle (A) The EDCM is operating at the constant current density of 19.4 mA/cm 2 (18.0 ASF) sized to perform
the CO2 removal function for one-person assuming an inlet pCO 2 level of 667 Pa (5.0 mm Hg). The
Normal Shuttle Mode is called for by:

• Manua: actuation

Normal Central (F) The EDCM is operating at a constant current density of 21.3 mA/cm 2 (19.8 ASF) sized to perform the
CO2 removal function for one-person assuming an inlet PCO 2 level of 400 Pa (3.0 mm Hg). The
Normal Central Morse is called for by:

• Manual actuation

Purge (C) The EDC is being purged with N 2 through all H 2 lines, H Z carrying module cavities and out through the
vent line. Module ci , rrent and the CCA pump are off. This is a continuous purge until a new mode is
called for. The Purge Mode is called for by:

• Manual actuation

Unpowered (D)	 No electrical power is applied to the EDC. Actuator positions can only be verified visually. Process air
flow is stopped. There is no N 2 or H 2 flow. The Unpowered Mode is called for by:

• Manual actuation (circuit breaker)
• Electrical power failure
• C/M I failure as detected by the Built-in Diagnostic (BID) circuit and supply power to the C/M 1 is

interrupted
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TABLE 7 MODEL 220 C/M I DT.ISIGN CHARACTERISTICS

Dimensions (HxWxD), cm (in) 19 x 39 x 40 (7.4 x 15.3 x 15.6)

Power Input, W 80
C/M I Power Consumption, W 67
Input Voltage, VDC 28 t 4

Computer Assembly
Bus STD-8088
Microprocessor Intel 8088
Machine Cycle Time, nsec 200 (5 MHz)
EPROM Memory, Bytes 32 K
RAM Memory, Bytes 16 K
Digital 1/0 64 TTL Lines
A/D Converter

Channels 32 single ended
Resolution 12 bits
Full Scale Ranges t 10 mV to ±10V 

D/A Converter
Channels 4 single ended
Resolution 12 bits
Full Scale Range t 10 VDC @ 5 mA

Serial Communications 1 RS232 Port
Signal Conditioning Assembly

Card Slots 12 Max.
Input Sensor Types: Differential Voltage

Wein Bridge
RTD
Reluctance Pickup (Speed)
Dew Point Sensor
LVDT

Total Number of System Inputs 19

System Outputs:
Total Number 7
Thermoelectric Cooler 2 ® 2 Amps Max.
DC Motors (28 VDC) 2
AC Motor (115 VAC @ 400 Hz) 1 on/off
Analog Current Setpoint 1 @ 0 to 5 VDC
Current Control—On/Off 1 ® 0 to 5 VDC

Communications
Front Panel

Operating Mode 5 Pushbuttons
Status 3 Indicators
Error Code 8 Digit Display
Error Code—Advance 1 Pushbutton

Communications Link 1 Asynchronous RS232 Port
Shutdown Inputs 1 0 5 VDC
Shutdown Outputs 2 ® 5 VDC

Operating Modes
Number of Operating Modes 	 4
Number of Allowable Mode Transitions	 9
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The size, weight and power summary of the C/M I is shown in Table 8. The
previously mentioned size reduction, of approximately 75% in weight, volume
and power, is evident in Figure 21, which compares the 220 C/M I with the
prior version Series 100 C/M I. The computer section alone represented almost
a 90% reduction in weight and power consumption with an increase in
reliability by using non-volatile (EPROM) memory versus the volatile or
magnetic core memory of the Series 100.

A separate enclosure houses controls that permit override of the actuators
during startup testing. This unit is shown in Figure 22. It was designed to
be used directly in-line with the actuator cables going to the CS-1. The
subsystem can be operated with the unit installed or not. (With the four
actuator switches in the auto position, the signals pass directly through the
unit.) Except for the very initial stages of the testing, the CS-1 was
operated with the actuator override controls removed from the subsystem.

TEST SUPPORT ACCESSORIES

Test Support Accessories (TSA) were developed and/or refurbished for the
program. This included major revisions of the TSA for the CS-1 testing and
minor upgrades to the three test stands for the EDC component endurance
testing.

CS-1 TSA

The CS-1 TSA provides the following:

1. Process air at the desired flow rate, dew point, temperature and
pCO2 levels

2. N2 and H2 gases at the desired pressures and flow rates

3. Coolant simulating a central spacecraft coolant source.

4. Electrical power at 28 V for the C/M I and 115 V, 400 Hz for the CCA
pump

5. Electrical circuitry to permit shutdown interface between the CS-1
and the TSA

6. Gas analysis equipment for measuring CS-1 performance.

Figure 23 shows the gas/coolant supply schematic and Figure 24 shows the
arrangement for gas sample analysis. Performance of the CS-1 based on air
side (e.g., pC0) measurements and H 2 /CO2 exhaust measurements (e.g., flow
rate) is determined with this equipment.

EDC Component TSA

Figures 25, 26 and 27 illustrate the three test stands that were used to
perform the continued endurance testing of the three major components of the
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TABLE 8 MODEL 220 C/M I WEIGHT. SIZE AND POWER CONSUMPTION SUMMARY

Size
Assembly Weight, W, Ib _ HxWxD, cm (in) Power, W

Computer 3.0 (6.6) 17.8 x 14.5 x 20.8 31.1
(7.0x	 5.7x	 8.2)

Signal Conditioning 2.5 (5.4) 15.7 x 13.2 r, 24.9 10.6(•)
(6.2x	 5.2x	 9.8)

Power Supplies 4.0 (8.9) 16.5 x	 6.4 x 22.9 16.6(b)
(+ 5, t 15 VDC) (6.5)f	 2.5 x	 9.0)

Power Drivers 0.9 (2.0) 17.3 x 17.8 x	 6.4 11.9(x)
(6.8 x	 7.0 x	 2.5)

Front Panel 0.8 (1.8) 18.8 x 38.9 x	 3.3 630
(7.4 x 15.3 x	 1.3)

Connectors/Wiring 0.4 (1.0) - -

Enclosure 1.9 (4.1) 18.8 x 38.9 x 39.6 -

(7.4 x 15.3 x 15.6)

Total 13.5 (29.8) 18.8 x 38.9 x 39.6 76.5

(7.4 x 15.3 x 15.6)

a. With no subsystem sensors or actuators connected.
b. Represents conversion efficiency from 28 VDC supply.
c. Assumes average of two indicators on during normal operation.
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EDC; the liquid cooled EDCM, au FCA and a CCA. These stands were developed
under a prior ( yj?gram and were refurbish , *  s required for the testing under
this program.

TESTING

Testing of the CS-1 followed fabrication of the module and the TSA. Endurance
testing of the EDC components for over 360 days was also conducted. These
tests are described below.

CS-1 Testing

A total of over 1,800 hours of CS-1 testing was achieved. versus the program
goal. of 60 days (1.440 hours). As discussed below, the performance of the
CS-1 was excellent.

Checkout Testin

During checkout testing all test stand control circuits, shutdown points and
sensor calibrations were verified. All interfaces with the TSA and CS-1 were
checked and verified.

Shakedown Testing

The shakedown test included continuous operation over 24 hours under nominal
baseline conditions. Subsequently, the shutdown and restart capabilities of
the integrated CS-1 and its test stand were verified.

Design Verification Test

The Designed Verification Test (DVT) provided data over the design range of
operating conditions to define normal operating characteristics of the module
and establish best operating conditions. These are listed in Table 9. she
established conditions were maintained during the test program unless varied
parametrically or otherwise specified.

Endurance Test

The endurance tests established the ability of the module to maintain accept-
able performance while running continuously for over 1.800 hours (75 days).
Conditions were typically maintained within the ranges listed in Table 9.
Performance during the entire 1,800 hours of CS-1 operation, including the
endurance and parametric tests is plotted in Figure 28. It 1s apparent th&e
the CO2 removal efficiency averaged greater than 90% despite perturbations of
pCO2 and process air inlet conditions. The stability of the electrochemical
cells is evidenced by essentially constant average cell voltage of 0.42 V per
cell.

J1
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TABLE 9 NOMINAL TEST CONDITIONS

Current, A	 9.9

Process Air
Flow Rate, dm3/s (cfm) 5.1 (10.8)
PCO2 , Pa (mm Hg) 400(3-0)
Relative Humidity, % 56-64
Dew Point, K (F) 283-286 (50-56)
Dry Bulb, K (F) 291-293 (64-68)

Hydrogen
Flow Rate, kg/h (lb/h) 0.006 (0.014)
Pressure, kPa (psia) 172(25)
Module Backpressure, kPa (psia) 34.5 (5.0)

Purge Gas
Type Nitrogen
Pressure, kPa (psia) 207(30)

Coolant
Temperature, K (F) 275-277 (36-40)
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Parametric Tests

The parametric tests established the effects of CO2 partial pressure (pCO2),
inlet process air RH and current density on module performance. These tests
were performed before and after the endurance test to investigate the effects
of long-term operation.

Variable CO. Partial Pressure. EDC performance at various partial pressure
levels is shown in Figure 29. The CO2 efficiency averaged approximately 100%
(well above the 85% design point) at a nominal pC0 level of 400 Pa (3.3
= Hg) and an anode exhaust (H2) backpressure of 3Z.5 kPa (5.0 psig).

Current Density Effects. The CS-1 performance as a function of current
density span is shown in Figure 30. This shows that excellent CO 2 removal
performance was maintained at the various current density levels.

Process Air RH Effects. The effect of variable humidity on CS-1 performance
was investigated over the range of 25 to 80% as shown in Figure 31. As seen,
the effect of RH has been minimized by the inclusion of the inlet air/liquid
heat exchanger in :he CS-1 design. This was an important finding during the
test program and verified its design function.

Conclusions of CS-1 Testing. The results of these tests verify that the CS-1
development objectives have been successfully met. Predictable, reproducible
high level performance over much wider ranges of RH and H2 backpressure than
heretofore demonstrated, particularly at the modular level, were achieved.
This success is attributed to the development of the unitized core, liquid-
cooled cells and additionally to ensuring the inlet air enters the EDCM
preconditioned to module temperatures via an air/liquid heat exchanger. These
innovations shall be considered baseline for future EDCMs.

EDC Component Endurance Testing

Another task of the program was to continue endurance testing on the three
major EDC subsystem components, namely an EDCM, an FCA and a CCA.

EDCM Endurance Testing

Figure 32 shows the lmyterm EDCM endurance test. This testing was initiated
under a prior program 	 and was continued for an additional 11,500 hours
under the current program. The total test time on this module is approximately
20,000 hours. It is seen that CO 2 removal performance and cell voltage
remained approximately constant over the test time although both values fell
off slightly.

FCA Endurance Testing

Figure 33 shows the FCA performance over approximately 9,500 hours of testing.
The parameters plotted are gas (air) inlet pressure, flow rate and residence
time. Residence time is related to how often the FCA valve is actuated or
cycled in a given period. For a residence time of 60 minutes the FCA remains
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in each of its four states for one hour before changing states, resulting in a
complete cycle every four hours or six cycles per day. Despite some shutdowns
of the test stand due to electronic failures in the FCA controller, there were
no problems with any mechanical parts of the FCA including the housing, valve
spool, seals and drive motor over the 360 day teat.

CCA Endurance Testing

Figure 34 shows the performance of the CCA over the 9,400 hours of endurance
testing under this program. The parameters selected for illustrating perform-
ance are the following: (1) total mass flow rate, (2) developed pump head
pressure, (3) temperature of the heat source which the CCA is trying to
maintain and (4) cycle time of the heater used to simulate a varying module
heat source. For the last parameter the heater is on for 30 minutes and off
for 30 minutes in the case shown. The CCA diverter valve must change its
position to divert more flow (heater on) or less flow (heater off) through an
external heat exchanger. While this is a more dynamic variation than encount-
ered in an application, it does provide for continuous movement and "exercise"
of the CCA diverter valve assembly. The CCA pump speed war, constant at 11,000
rpm throughout the testing. At one point during the testing a new design was
tried - direct-drive coupling of the motor and the CCA pump. This proved to
be unsuccessful, and testing with the originally designed magnetic-coupled
drive was then resumed. The direct-drive coupling testing occurred over three
weeks of the total testing and was terminated because of a motor bearing
failure due to excessive shaft loads.

SUPPORTING TECHNOLOGY

Two activities were undertaken during the program as part of the EDC
advancement. These were the preliminary design of a Triple Redundant Relative
Humidity Sensor (TRRHS) and the fabrication of a EDC subsystem mockup as
applied to the Space Station.

TRRHS Preliminary Design

The present method of measuring process air inlet RH to the CS-1 consists of
using a commercially available dew point temperature sensor head and a dry
bulb temperature sensor. Electronics for the chilled mirror-type dew point
sensor are fairly complex and power consuming because a thermoelectric cooler
is used that requires considerable control circuitry and power. It is desirable
to replace these two sensors with a single unit of small size and also, since
humidity measurement is critical to CS-1 operation. to make it triply redr:nuant.
A further requirement was to include in situ calibration with the TRRHS co
verify its operation and stability over a long period of time.

An extensive literature survey was conducted, from which data for 19 key
methods of dew point and RH measurement were collected, summarized and evalu-
ated. Performance specifications defined for the TRRHS are shown in Table 10.
A semi-conductor which is responsive to RH changes was selected, as shown in
Figure 35. It has triple redundant sensing elements and the necessary
mechanical hardware and other sensors for in situ calibration based on a two
pressure calibration scheme.
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TABLE 10 TRRHS SPECIFICATIONS

OPERATIONAL CHARACTERISTICS
RH Range, % 20-95
Dew Point Temperature Range, K (F) 253-321 (-4 to 118)
Temperature Range, K (F) 273-322 (32-120)
Pressure, kPa (psla) 35-140(5-20)
Accuracy, % RH * 3 over range
Stability (at 50% RH)

Short-term, % RH change/month * 3
Long-term, % RH change/year * 10

Repeatability, % RH *2
Reproducibility. % RHM * 3
Linearity, Max. % RH Deviation from a straight 15

line over range
Response Time, sec.

Step Increase (90% FS) 45
Step Decrease (95% FS) 60

Hysteresis, % RH midrange deviation between 10
forward and reverse full range excursions

Display Resolution, I% RH 0.1
Temperature Sensitivity, % RH/K (% RH/F) 0.03 (0.05)
Air Velocity Sensitivity, % RH/m/s (%RH/ft/s) 0.03 (0.1)
Air Pressure Sensitivity, % RH/kPa (% RH/psis) 0.03 (0.2)
Shelf Life, years 5
Operating Life, years 2
Reliability (MTSF), h 10,000
Sensor Orientation Sensitivity, c/o RH * 4

In Situ Calibration

Calibration Points. % RH
Low RH Point 40
High RH Point 80

Long-Term Stability, % RH/year
Low RH Point *10
High RH Point t 8

Repeatability, % RH
Low RH Point t 3
High RH Point t 2

Accuracy, % RH
Low RH Point * 3
High RH Point t 2

Reproducibility, % RH
Low RH Point 15
High RH Point * 3

Calibration Time (complete), min 5
Calibration Frequency, No./day 1

(a) Variation from one instrument to another
continued -
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Table 10 - continu&4

ELECTRICAL CHARACTERISTICS
Power (total) W	 10
Power Supply Voltage, VAC	 115
Power Supply Frequency, Hz 	 60
Front Panel Controls

Display(s)	 RH-3 Digit LED
Indicators	 Power On, In Calibration Mode
Control Adjustments 	 Power On

Rear Panel Controls
Output	 TBD

• Analog'
• Alarms
• Other Digital Outputs/Relays

Control Adjustments
Sensor Cable

PHYSICAL CHARACTERISTICS

Sensor
Weight, kg (lb) 0.23 (0.5)
Volume, crn 3 (in3) 340(21)
Dimensions, cm (in) 3.8 diam x 7.6

(1.5 dram x 3)
Mounting Boss--Mounted

Electronic Package
Weight, kg (lb) 4.1(9)
Volume, dm 3 (in3) 3.5 (216)
Dimensions, cm (in) 7.6 x 15 x 30

(3x6x12)
Meur:ting Free Standing

ENVIRONMENTAL LIMITS
Air Velocity, mis (tt/s) 0-6(0-20)
Air Pressure, kPa (psis) 35-140(5-20)
Ambient Temperature, K (F)

Sensor 273-322 (32-120)
Electronics Package 277 -311 (40-100)

Shock TBD
Vibration TBD
EMI TBD
Gravity, g 0.2

MAINTAINABILITY
Line Replaceable Component Sensor, Electronics
Replacement Time, h 0.2, 0.3
Special Tools None
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RECOMMENDATIONS

It is recommended that the current program be extended and focused on continued
testing of the CS-1 concept. In addition, it is recommended that an in situ
cell maintenance concept for increased EDCM reliability be incorporated into
the CS-1. This concept will include compact, automatically switched relays to
electrically isolate degraded cells. The integrated electrical design will
minimize space requirements and resistive power losses. The CS-1 composite
cell design with its allowance for a temperature difference between coolant
and anode during operation will avoid cell dry out during shutdown, during
which the temperature will drop to compensate for terminated water production.
inclusion of this capability, along with the development of a TRRHS, will then
ready the CS-1 for the stage at which it can be incorporated into the ECLSS
for the Space Station.
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