52 research outputs found

    Enhanced cardiac expression of two isoforms of matrix metalloproteinase-2 in experimental diabetes mellitus.

    Get PDF
    BackgroundDiabetic cardiomyopathy (DM CMP) is defined as cardiomyocyte damage and ventricular dysfunction directly associated with diabetes independent of concomitant coronary artery disease or hypertension. Matrix metalloproteinases (MMPs), especially MMP-2, have been reported to underlie the pathogenesis of DM CMP by increasing extracellular collagen content.PurposeWe hypothesized that two discrete MMP-2 isoforms (full length MMP-2, FL-MMP-2; N-terminal truncated MMP-2, NTT-MMP-2) are induced by high glucose stimulation in vitro and in an experimental diabetic heart model.MethodsRat cardiomyoblasts (H9C2 cells) were examined to determine whether high glucose can induce the expression of the two isoforms of MMP-2. For the in vivo study, we used the streptozotocin-induced DM mouse heart model and age-matched controls. The changes of each MMP-2 isoform expression in the diabetic mice hearts were determined using quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemical stains were conducted to identify the location and patterns of MMP-2 isoform expression. Echocardiography was performed to compare and analyze the changes in cardiac function induced by diabetes.ResultsQuantitative RT-PCR and immunofluorescence staining showed that the two MMP-2 isoforms were strongly induced by high glucose stimulation in H9C2 cells. Although no definite histologic features of diabetic cardiomyopathy were observed in diabetic mice hearts, left ventricular systolic dysfunction was determined by echocardiography. Quantitative RT-PCR and IHC staining showed this abnormal cardiac function was accompanied with the increases in the mRNA levels of the two isoforms of MMP-2 and related to intracellular localization.ConclusionTwo isoforms of MMP-2 were induced by high glucose stimulation in vitro and in a Type 1 DM mouse heart model. Further study is required to examine the role of these isoforms in DM CMP

    Serum and urine metabolomic biomarkers for predicting prognosis in patients with immunoglobulin A nephropathy

    Get PDF
    Background Immunoglobulin A nephropathy (IgAN) is the most prevalent form of glomerulonephritis worldwide. Prediction of disease progression in IgAN can help to provide individualized treatment based on accurate risk stratification. Methods We performed proton nuclear magnetic resonance-based metabolomics analyses of serum and urine samples from healthy controls, non-progressor (NP), and progressor (P) groups to identify metabolic profiles of IgAN disease progression. Metabolites that were significantly different between the NP and P groups were selected for pathway analysis. Subsequently, we analyzed multivariate area under the receiver operating characteristic (ROC) curves to evaluate the predictive power of metabolites associated with IgAN progression. Results We observed several distinct metabolic fingerprints of the P group involving the following metabolic pathways: glycolipid metabolism; valine, leucine, and isoleucine biosynthesis; aminoacyl-transfer RNA biosynthesis; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism. In multivariate ROC analyses, the combinations of serum glycerol, threonine, and proteinuria (area under the curve [AUC], 0.923; 95% confidence interval [CI], 0.667–1.000) and of urinary leucine, valine, and proteinuria (AUC, 0.912; 95% CI, 0.667–1.000) showed the highest discriminatory ability to predict IgAN disease progression. Conclusion This study identified serum and urine metabolites profiles that can aid in the identification of progressive IgAN and proposed perturbed metabolic pathways associated with the identified metabolites

    Diffuse Large B-cell Lymphoma Arising from Chronic Tuberculous Empyema

    No full text
    Pyothorax-associated lymphoma is a relatively rare type of lymphoma that occurs in patients who have long histories of tuberculous pleuritis or induced pneumothorax. It is a type of non-Hodgkin’s lymphoma of mainly the B-cell phenotype and is strongly associated with Epstein−Barr virus infection. A majority of these cases have been reported in Japan, although some cases have occurred in Western countries. Here, we describe a case of pyothorax- associated lymphoma in a patient with a 30-year history of chronic tuberculous empyema. The patient underwent decortication under the impression of chronic empyema with fistula. The histopathologic diagnosis was a diffuse large B-cell lymphoma associated chronic inflammation

    Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators

    No full text
    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 degrees C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

    Radiochemical behavior of nitrogen species in high temperature water

    No full text
    The water radiolysis in-core at light water reactors (LWRs) produces various radicals with other ionic species/molecules and radioactive nitrogen species in the reactor coolant. Nitrogen species can exist in many different chemical forms and recirculate in water and steam, and consequently contribute to what extent the environmental safety at nuclear power plants. Therefore, a clear understanding of formation kinetics and chemical behaviors of nitrogen species under irradiation is crucial for better insight into the characteristics of major radioactive species released to the main steam or relevant coolant systems and eventually development of advanced processes/methodologies to enhance the environmental safety at nuclear power plants. This paper thus focuses on basic principles on electrochemical interaction kinetics of radiolytic molecules and various nitrogen species in high temperature water, fundamental approaches for calculating thermodynamic values to predict their stability and domain in LWRs, and the effect of nitrogen species on crevice chemistry/corrosion and intergranular stress corrosion cracking (IGSCC) susceptibility of structure materials in high temperature water
    • 

    corecore